This project addresses the controversy on cardiomyogenesis of the adult mouse heart, and raises the unexplored possibility that the aging myopathy is dependent on alterations of cardiac stem cell (CSC) growth and differentiation. The major hypothesis to be tested is that myocardial aging is a stem cell disease and defects in CSC behavior determine the structural and physiological manifestations of the old heart. Cardiomyogenesis, mediated by CSC activation and lineage specification, may change dramatically during the lifespan of the mouse heart, and the phenotypic properties of aged CSCs may impact on the size, composition, and function of the derived progeny. Aged CSCs may form more fibroblasts and less myocytes than young CSCs, resulting in an impairment of myocyte relaxation and ventricular compliance, typical aspects of diastolic dysfunction and the cardiac senescent phenotype. However, a pool of young CSCs may persist in the old heart and could be implemented to rescue and, eventually, reverse the aging myopathy. To establish the cellular mechanisms involved in the maturation of the heart, tissue homeostasis in the adult organ, and myocardial aging, we will employ three distinct approaches, which are dependent on separate parameters: a) The average age of myocytes and non-myocytes will be determined by 14C thymidine birth dating of cardiac cells;b) The age distribution of myocytes and non-myocytes will be defined by a novel strategy based on age-structured cell populations;and c) The rate of formation of myocytes and nonmyocytes derived from commitment of CSCs will be evaluated by a model of hierarchically organized cells. These 3 sets of information will offer a """"""""redundant"""""""" perspective of the cellular dynamics of the mouse heart.
This research raises the possibility that the aging myopathy is dictated by defects in the function of resident CSCs and that strategies may be developed to implement stem cell therapy to rescue and eventually reverse myocardial aging and diastolic and systolic heart failure in the elderly.
Borghetti, Giulia; Eisenberg, Carol A; Signore, Sergio et al. (2018) Notch signaling modulates the electrical behavior of cardiomyocytes. Am J Physiol Heart Circ Physiol 314:H68-H81 |
Wysoczynski, Marcin; Guo, Yiru; Moore 4th, Joseph B et al. (2017) Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence. J Am Coll Cardiol 69:1824-1838 |
Meo, Marianna; Meste, Olivier; Signore, Sergio et al. (2016) Reduction in Kv Current Enhances the Temporal Dispersion of the Action Potential in Diabetic Myocytes: Insights From a Novel Repolarization Algorithm. J Am Heart Assoc 5: |
Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled et al. (2016) Myocyte repolarization modulates myocardial function in aging dogs. Am J Physiol Heart Circ Physiol 310:H873-90 |
Moccetti, Tiziano; Leri, Annarosa; Goichberg, Polina et al. (2015) A Novel Class of Human Cardiac Stem Cells. Cardiol Rev 23:189-200 |
Leri, Annarosa; Rota, Marcello; Pasqualini, Francesco S et al. (2015) Origin of cardiomyocytes in the adult heart. Circ Res 116:150-66 |
Signore, Sergio; Sorrentino, Andrea; Borghetti, Giulia et al. (2015) Late Na(+) current and protracted electrical recovery are critical determinants of the aging myopathy. Nat Commun 6:8803 |
Iso, Yoshitaka; Rao, Krithika S; Poole, Charla N et al. (2014) Priming with ligands secreted by human stromal progenitor cells promotes grafts of cardiac stem/progenitor cells after myocardial infarction. Stem Cells 32:674-83 |
Goichberg, Polina; Chang, Jerway; Liao, Ronglih et al. (2014) Cardiac stem cells: biology and clinical applications. Antioxid Redox Signal 21:2002-17 |
D'Amario, Domenico; Leone, Antonio M; Iaconelli, Antonio et al. (2014) Growth properties of cardiac stem cells are a novel biomarker of patients' outcome after coronary bypass surgery. Circulation 129:157-72 |
Showing the most recent 10 out of 25 publications