The regulatory functions of NK cells on other immune cells constitute an important link between the innate and the specific immune system. Experiments performed in our laboratory have shown interactions between NK cells and B lymphocytes which result in specific modulations of B cell differentiation. We wish to continue these studies to investigate the mechanism by which NK cells influence B cell differentiation. First, whereas IFN-gamma produced by NK cells can clearly increase the level of the IgG2a response, we postulate that IFN- gamma is an amplification factor for post-switched cells and that NK cells play an additional role in initiating the switch to this isotype that is independent of IFN-gamma but dependent on IL-12. Utilizing IFN- gamma-/- mice, which continues to produce significant amounts of IgG2a, we will investigate the cellular and molecular events that may be involved. In addition, possible interactions of NK cells and accessory cells will be examined in order to determine their effect on the T independent B cell antigen response. These experiments may serve to uncover the switch factor for IgH chain switch to gamma2a and the role of IL-12 in this step. Secondly, we will explore the ability of NK cells to increase the longevity of antibodies induced by T-independent antigens and the mechanism by which this occurs. Finally, the biological significance of the preferential switch to IgG2a induced by NK cells will be investigated by examining the effect of NK cell activation on the growth of a B cell tumor that does not elicit direct NK cytotoxicity.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
United States
Zip Code
Johansson, Maria H; Taylor, Mesha A; Jagodic, Maja et al. (2006) Mapping of quantitative trait loci determining NK cell-mediated resistance to MHC class I-deficient bone marrow grafts in perforin-deficient mice. J Immunol 177:7923-9
Gao, Ning; Dang, Tam; Dunnick, Wesley A et al. (2005) Receptors and counterreceptors involved in NK-B cell interactions. J Immunol 174:4113-9
Mooney, Jill M; Klem, Jennifer; Wulfing, Christoph et al. (2004) The murine NK receptor 2B4 (CD244) exhibits inhibitory function independent of signaling lymphocytic activation molecule-associated protein expression. J Immunol 173:3953-61
Yuan, Dorothy; Bibi, Rula; Dang, Tam (2004) The role of adjuvant on the regulatory effects of NK cells on B cell responses as revealed by a new model of NK cell deficiency. Int Immunol 16:707-16
Klem, Jennifer; Verrett, Pamela C; Kumar, Vinay et al. (2002) 2B4 is constitutively associated with linker for the activation of T cells in glycolipid-enriched microdomains: properties required for 2B4 lytic function. J Immunol 169:55-62
Taylor, Mesha Austin; Ward, Brant; Schatzle, John D et al. (2002) Perforin- and Fas-dependent mechanisms of natural killer cell-mediated rejection of incompatible bone marrow cell grafts. Eur J Immunol 32:793-9
Morris, Margaret A; Liu, Jingxuan; Arora, Veera et al. (2002) B6 strain Ly49I inhibitory gene expression on T cells in FVB.Ly49IB6 transgenic mice fails to prevent normal T cell functions. J Immunol 169:3661-6
Morris, Margaret A; Koulich, Elena; Liu, Jingxuan et al. (2002) Definition of additional functional ligands for Ly49I(B6) using FVBLy49I(B6) transgenic mice and B6 natural killer cell effectors. Transplantation 74:1449-54
Murphy, W J; Koh, C Y; Raziuddin, A et al. (2001) Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol Rev 181:279-89
Boles, K S; Stepp, S E; Bennett, M et al. (2001) 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol Rev 181:234-49

Showing the most recent 10 out of 43 publications