The overall goal of this research program is to understand transplantation tolerance mediated by costimulation blockade. This form of transplantation tolerance is associated with the deletion of alloreactive CDS T cells. Importantly, the activafion of innate immunity by virus infection or exposure to Toll-like receptor agonists can prevent both alloreactive CDS T cell delefion and tolerance induction. The specific focus of this Study is to define the molecular mechanisms of CDS T cell apoptosis. We propose to examine the biochemical mechanism of CDS T cell death (Specific Aim 1). These Studies will provide the foundation for molecular studies of specific pathways of CD8 T cell death (Specific Aims 2 &3). It is established that members of the Bcl2 protein family act as critical regulators of CDS T cell death. Moreover, members ofthe stress-activated protein kinase family are implicated in the regulafion of CDS T cell death. We will examine these pathways during the induction of transplantation tolerance during co-sfimulation blockade. We will also examine CDB T cell death when transplantafion tolerance is disrupted by exposure to Toll-like receptor agonists and lymphocyfic choriomeningifis virus (LCMV) infection. These studies are fully integrated within the theme of the Program Project and depend upon collaborative studies with the other Projects.
The Specific Aims of this proposal are to examine the: 1. Biochemical mechanism of CDS T cell death. 2. Role of stress-activated MAP kinases in CDS T cell death. 3. Role of Bcl2 familv proteins in CDB T cell death. We anticipate that the successful completion of these studies will provide important new insight into the understanding of transplantafion tolerance and that the new informafion we obtain will contribute to the design of therapies for the treatment of human disease.

Public Health Relevance

The inducfion of immune tolerance is important for successful organ transplantation. The focus of this Program Project is the analysis of a co-stimulation blockade protocol that leads to the deletion of alloreactive CDS T cells. The goal of this project is to define the biochemical mechanism of CDB T cell death. This information is critical for understanding immune tolerance and for the development of improved therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI046629-11
Application #
8279393
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2011-06-01
Project End
2015-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
11
Fiscal Year
2011
Total Cost
$301,444
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Watkin, Levi B; Mishra, Rabinarayan; Gil, Anna et al. (2017) Unique influenza A cross-reactive memory CD8 T-cell receptor repertoire has a potential to protect against EBV seroconversion. J Allergy Clin Immunol 140:1206-1210
Che, Jenny W; Daniels, Keith A; Selin, Liisa K et al. (2017) Heterologous Immunity and Persistent Murine Cytomegalovirus Infection. J Virol 91:
Aslan, Nuray; Watkin, Levi B; Gil, Anna et al. (2017) Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. MBio 8:
Hasgur, Suheyla; Aryee, Ken Edwin; Shultz, Leonard D et al. (2016) Generation of Immunodeficient Mice Bearing Human Immune Systems by the Engraftment of Hematopoietic Stem Cells. Methods Mol Biol 1438:67-78
Samanta, S; Sun, H; Goel, H L et al. (2016) IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene 35:1111-21
Bryce, Paul J; Falahati, Rustom; Kenney, Laurie L et al. (2016) Humanized mouse model of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol 138:769-779
Cohen, Jessica L; Shen, Yuefei; Aouadi, Myriam et al. (2016) Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA. Mol Pharm 13:964-978
Urban, Stina L; Berg, Leslie J; Welsh, Raymond M (2016) Type 1 interferon licenses naïve CD8 T cells to mediate anti-viral cytotoxicity. Virology 493:52-9
Tencerova, Michaela; Aouadi, Myriam; Vangala, Pranitha et al. (2015) Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 29:2959-69
Gil, Anna; Yassai, Maryam B; Naumov, Yuri N et al. (2015) Narrowing of human influenza A virus-specific T cell receptor ? and ? repertoires with increasing age. J Virol 89:4102-16

Showing the most recent 10 out of 118 publications