The Cellular morphology Core laboratory is constructed to meet the increasing demands of cell biology and transgene detection in the area of gene therapy research. Routine morphology support in the form of frozen, paraffin, and glycolmethacrylate sectioning for light level microscopy (LM) as well as standard transmission electron microscopy (EM) will be provided as a comprehensive service to investigators participating in P01 projects. In addition, the core will emphasize state of the art methodologies for detecting transgene expression including in situ hybridization, immunocytochemistry,a nd histochemical detection of beta-galactosidase and alkaline phosphatase reporter genes. The cellular morphology core will provide techniques of in situ hybridization and immunocytochemical detection of transgenes as comprehensive services to preclinical studies of the Animal Models Core. The cellular morphology core will interact with participating P01 projects by two mechanisms; i) comprehensive service, and ii) facilities and technical support. Comprehensive services will be predominantly applied preclinical projects. This will assure athe minimal amount of technical variability and high quality assurance. Alternatively, the CMC will provide comprehensive services of in situ hybridization, immunocytochemistry, and histochemistry through the initial developmental stages of studies pertaining to PO1 projects. Once methods for developmental studies have been defined within the core, the technologies will be transferred to individual investigators. During this phase of developmental projects, users will have full support for routine sectioning and full access to equipment and commonly used reagents for specialized techniques. Due to the specialized nature of electron microscopy, all EM services will be provided as a comprehensive service. As Faculty Advisor tot he Cellular Morphology Core, Dr. John Engelhardt will be the principal investigator of this DMD Morphology Core component. He has published studies involving CFTR localization by in situ hybridization and immunocytochemistry in human bronchus as well as several manuscripts which used gene transfer technology to better understand the biology of host-vector interactions as it pertains to recombinant adenovirus in human proximal respiratory epithelium in xenografts, mouse liver, and cotton rat lung.

Project Start
1999-07-01
Project End
2001-06-30
Budget Start
Budget End
Support Year
5
Fiscal Year
2000
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Bridges, Charles R; Burkman, James M; Malekan, Ramin et al. (2002) Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Ann Thorac Surg 73:1939-46
Croyle, M A; Cheng, X; Sandhu, A et al. (2001) Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther 4:22-8
Zoltick, P W; Chirmule, N; Schnell, M A et al. (2001) Biology of E1-deleted adenovirus vectors in nonhuman primate muscle. J Virol 75:5222-9
Zhang, Y; Chirmule, N; Gao, G P et al. (2001) Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 3:697-707
Louboutin, J P; Rouger, K; Tinsley, J M et al. (2001) iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin. Mol Med 7:355-64
Cordier, L; Gao, G P; Hack, A A et al. (2001) Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 12:205-15
Croyle, M A; Chirmule, N; Zhang, Y et al. (2001) ""Stealth"" adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 75:4792-801
Gao, G; Qu, G; Burnham, M S et al. (2000) Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther 11:2079-91
Chirmule, N; Xiao, W; Truneh, A et al. (2000) Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol 74:2420-5
Cordier, L; Hack, A A; Scott, M O et al. (2000) Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther 1:119-29

Showing the most recent 10 out of 22 publications