The analytical Services Core will provide input in the design and analysis of all project, on this program project grant. It will also be responsible for the data collection, data base maintenance and analysis of clinical projects. The flow cytometry in this core will facilitate the analysis of cell kinetics and apoptosis that are required in this proposal. The facility will interact with individual investigators and provide input into experimental design, be responsible for all tumor disaggregation and staining procedures, run the samples, and analyze and interpret the data. The flow facility itself proposes to develop novel methods to measure the population dynamics of cells in tumors. In particular the investigators will define the influence that apoptotic cell death has on the estimates of cell kinetic parameters and extend their existing analytical procedures to incorporate the extra information that derives from knowledge of apoptotic rates. They propose that the kinetic parameters which previously have been measured (duration of S-phase, TS; the tumor potential doubling time, Tpot; S-phase fraction, SPF; labeling index, LI) be extend to include measurements of apoptotic frequency; growth factors, GF; and a quantify representing the mean lifetime of doomed cells, TL.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Keck, Michaela K; Zuo, Zhixiang; Khattri, Arun et al. (2015) Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res 21:870-81
Edmondson, Elijah F; Hunter, Nancy R; Weil, Michael M et al. (2015) Tumor Induction in Mice After Localized Single- or Fractionated-Dose Irradiation: Differences in Tumor Histotype and Genetic Susceptibility Based on Dose Scheduling. Int J Radiat Oncol Biol Phys 92:829-36
Neskey, David M; Osman, Abdullah A; Ow, Thomas J et al. (2015) Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer. Cancer Res 75:1527-36
Alsbeih, Ghazi; Brock, Williams; Story, Michael (2014) Misrepair of DNA double-strand breaks in patient with unidentified chromosomal fragility syndrome and family history of radiosensitivity. Int J Radiat Biol 90:53-9
Komaki, Ritsuko; Paulus, Rebecca; Blumenschein Jr, George R et al. (2014) EGFR expression and survival in patients given cetuximab and chemoradiation for stage III non-small cell lung cancer: a secondary analysis of RTOG 0324. Radiother Oncol 112:30-6
Cortez, Maria Angelica; Valdecanas, David; Zhang, Xiaochun et al. (2014) Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther 22:1494-1503
Bhardwaj, Vikas; Cascone, Tina; Cortez, Maria Angelica et al. (2013) Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer 119:1768-75
Story, Michael; Ding, Liang-hao; Brock, William A et al. (2012) Defining molecular and cellular responses after low and high linear energy transfer radiations to develop biomarkers of carcinogenic risk or therapeutic outcome. Health Phys 103:596-606
Raju, Uma; Riesterer, Oliver; Wang, Zhi-Qiang et al. (2012) Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways. Radiother Oncol 105:241-9
Thariat, Juliette; Ang, K Kian; Allen, Pamela K et al. (2012) Prediction of neck dissection requirement after definitive radiotherapy for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 82:e367-74

Showing the most recent 10 out of 99 publications