Melanoma has been one ofthe fastest rising malignancies in the last four decades with cases increasing from below three per 100,000 people to above 13 (18.9 if only whites are counted). The following discoveries have been made that serve as the basis for this program project: 1) Mutations in genes ofthe MAP kinase pathway are frequent in melanoma and mutually exclusive. Mutations are most frequent in BRAF (50%) followed by NRAS (15%) and c-kit (4%). 2) Within each mutation group there are sub-groups due to additional critical mutations. 3) The biological characteristics of melanomas including their progression and metastasis are driven by both tumor and microenvironment forces. 4) Small molecule inhibitors for tumor-associated kinases lead to powerful effects on melanoma cells both in vitro and in vivo. Our first objective is to identify somatic alterations in growth factor mediated signaling pathways and determine whether they are targets for therapy. Our group (Project 2, Bastian) has recently identified c-kit mutations in melanoma, particularly in acral and mucosal melanomas, that are mutually exclusive to BRAF and NRAS mutations, and emerging trial data suggest that drugs targeting c-kit induce significant clinical responses in some patients with these mutations. Several lines of evidence point towards a wider role ofthe c-kit signaling pathway is specific types of melanoma and we will perform detailed genetic and functional analyses to analyze the pathway for additional therapeutic targets and factors of primary and secondary resistance to ckit directed therapies (Project 2, Bastian). Two other genes that function downstream of c-kit encoding isoforms of the p70S6 kinase, critical regulators of protein synthesis and cell growth, are also amplified in many melanomas. Therefore, we will characterize the biochemical properties of p70S6K and develop potent and specific inhibitors to this kinase (Project 3, Marmorstein). Our complementary second objective that focuses on therapy resistance in melanoma is to identify sub-populations of tumor cells that are drivers for tumor progression and evaluate combination therapeutic strategies that target this tumor cell sub-population in addition to the bulk of tumor cells. Our group (Project 1, Herlyn) has identified melanoma cells with high self-renewing capacity that are very slowly cycling but have a high proliferative reserve. They are characterized by expression ofthe histone 3 K4 demethylase JARID1B. In this proposal we will characterize the signaling mechanisms mediating therapy resistance in JARID1B+ cells and biochemically analyze the JARID1B protein to develop and evaluate therapeutic strategies using inhibitors to JARID1B and/or JARIDIB-dependant signaling (Project 3, Marmorstein and Project 1, Herlyn).

Public Health Relevance

The major objective of this long-standing program project is to better understand the biology of melanoma development from a normal melanocytes to a mole and the progression to primary and metastatic melanoma. In the past, we have delineated each progression stage with monoclonal antibodies and have developed models in culture and experimental animals that mimic the disease as we experience it in patients. In this renewal application we continue to work on the biology of melanoma with a major emphasis on using the accumulated information to develop new strategies for therapy. Forthis reason, we have expanded the project, which includes now a structural biologist and a chemist to develop inhibitors for two key enzymes for this malignancy. This multi-disciplinary program has been a long-term center for novel approaches in melanoma research.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (J1))
Program Officer
Sathyamoorthy, Neeraja
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Heppt, Markus V; Wang, Joshua X; Hristova, Denitsa M et al. (2018) MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J Invest Dermatol 138:141-149
Ca├▒adas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Liu, Shujing; Zhang, Gao; Guo, Jianping et al. (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426
Reyes-Uribe, Patricia; Adrianzen-Ruesta, Maria Paz; Deng, Zhong et al. (2018) Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 37:4058-4072
Chen, Gang; Huang, Alexander C; Zhang, Wei et al. (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382-386
Vitiello, Marianna; Tuccoli, Andrea; D'Aurizio, Romina et al. (2017) Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget 8:25395-25417
Krepler, Clemens; Sproesser, Katrin; Brafford, Patricia et al. (2017) A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Rep 21:1953-1967
Somasundaram, Rajasekharan; Zhang, Gao; Fukunaga-Kalabis, Mizuho et al. (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8:607

Showing the most recent 10 out of 382 publications