In most cells, the second messenger cAMP inhibits cellular proliferation by interfering with signaling through the mitogen activated protein kinase pathway. But in a subset of endocrine cells, notably in somatotrophs of the anterior pituitary and in thyroid follicular cells, cAMP is actually a mitogen which mediates hormonal signals arising from the hypothalamus and pituitary, respectively. The goal of our proposal is to test the hypothesis that cAMP induces endocrine cell proliferation via the cAMP responsive factor CREB. We will test whether, in response to cAMP induction, phosphorylation of CREB at the PK-A phospho acceptor site Ser 133 promotes cellular proliferation by inducing the expression of specific target genes which function as endocrine-specific cell-cycle regulators. These studies may have important implications in the treatment of a number of endocrine diseases such as acromegaly (somatotroph tumors) and Grave's disease (thyroid), where inappropriate activation of the cAMP pathway leads to neoplastic transformation.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Carrano, Andrea C; Dillin, Andrew; Hunter, Tony (2014) A Kr├╝ppel-like factor downstream of the E3 ligase WWP-1 mediates dietary-restriction-induced longevity in Caenorhabditis elegans. Nat Commun 5:3772
Altarejos, Judith Y; Montminy, Marc (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141-51
Carrano, Andrea C; Liu, Zheng; Dillin, Andrew et al. (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460:396-9
Bres, Vanessa; Yoh, Sunnie M; Jones, Katherine A (2008) The multi-tasking P-TEFb complex. Curr Opin Cell Biol 20:334-40
Fryer, Christy J; White, J Brandon; Jones, Katherine A (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509-20
Tutter, A; McAlpine, G S; Jones, K A (1999) Mechanism of chromatin recognition and transcriptional regulation by LEF-1 and the Wnt/Wg-responsive LEF-1:beta-catenin complex. Cold Spring Harb Symp Quant Biol 64:445-52
Bagga, R; Armstrong, J A; Emerson, B M (1998) Role of chromatin structure and distal enhancers in tissue-specific transcriptional regulation in vitro. Cold Spring Harb Symp Quant Biol 63:569-76
Bagga, R; Emerson, B M (1997) An HMG I/Y-containing repressor complex and supercoiled DNA topology are critical for long-range enhancer-dependent transcription in vitro. Genes Dev 11:629-39
Carlsson, P; Waterman, M L; Jones, K A (1993) The hLEF/TCF-1 alpha HMG protein contains a context-dependent transcriptional activation domain that induces the TCR alpha enhancer in T cells. Genes Dev 7:2418-30