? Project 3 There is resurgent interest in immunotherapy approaches against glioblastoma multiforme (GBM), a brain cancer with dismal prognosis. We have pioneered the utilization of Gene-Mediated Cytotoxic Immunotherapy (GMCI), consisting of tumor injection of aglatimagene besadenovec (AdV-tk) a non-replicating adenovirus expressing the Herpes virus thymidine kinase gene followed by an oral anti-herpetic prodrug (valacyclovir), combined with standard of care (SOC) in humans with newly diagnosed GBM. Mature phase II data appears to show encouraging, albeit not definite, results in terms of possible efficacy based on the extent of residual tumor burden. Our pilot data shows that efficacy may be limited by immune checkpoint signaling networks, such as PD-1/ PD-L1. Therefore, our overarching hypothesis is that a combination of GMCI-based intratumoral immunostimulation with inhibition of immune checkpoint signaling will provide increased effectiveness in animal models of glioma and in a planned prospective randomized clinical trial. In addition, we hypothesize that extracellular vesicles (EVs) and their contents released by glioma cells provide immunomodulatory signals in the GBM microenvironment. These will be further studied in an integrated mode with the other Project 1 and 2 of this PO1. Core B and C will be utilized as well for animal models and sample procurement/storage. These hypotheses will be tested by accomplishing the following specific aims:
Aim 1 : Characterize the impact of GBM tumor burden on the efficacy of GMCI alone and in combination with immune checkpoint inhibition. Hypothesis: GBM tumor burden mitigates the impact of GMCI due to cytotoxic T cell exhaustion. Significance: Our preclinical and clinical data suggests that GMCI is most effective with minimal tumor. However, the impact of Immune checkpoint inhibition on this effectiveness is not known. Impact: This knowledge would help in the design of our planned clinical trial for GBM.
Aim 2 : Determine if GMCI can sensitize resistant GBMs to immune checkpoint inhibition. Hypothesis: The response of different GBMs to GMCI depends on their mutational load and/or differing expression of immune checkpoint activating ligands. Significance: Since our preclinical data shows that not GBM models differ in response to PD-1 immune checkpoint inhibition, these experiments would determine what other immune checkpoint signals may be operative and/or whether altering the mutation load in different GBM cells may lead to different efficacy responses. Impact: This knowledge would also help in clinical trial design and provide mechanistic evidence of possible resistance mechanisms.
Aim 3 : Determine the significance of immune checkpoint inhibitory protein expression in extracellular vesicles (EVs) released by GSCs after GMCI in vitro and in vivo. Hypothesis: Immune checkpoint inhibitory proteins in EVs are a novel mechanism of glioma immuno-evasion after therapy and may help identify patients responsive to this therapy. Significance: Expression of PD-L1 and other immune checkpoint inhibitory proteins in EVs will help tumor immuno-evasion, and provide potential biomarkers for therapy. Impact: This knowledge would impact future design of immunotherapy trials.

Public Health Relevance

? Project 3 Glioblastoma Multiforme (GBM) is one of the deadliest cancers to date, in spite of formidable advances in genomics, targeted therapies and clinical trials. We have encouraging, but not definitive, clinical trial data suggesting that patients afflicted with a newly diagnosed GBM may benefit when a minimal tumor residual is subjected to Gene Mediated Cytotoxic Immunotherapy (GMCI) combined with standard of care (SOC). However, tumor evasion from the therapy may result from activation of immune checkpoint signaling. We thus propose to perform preclinical studies in mouse models of GBM to determine if GMCI can be combined with immune checkpoint inhibition, in anticipation of performing this in a planned randomized clinical trial in humans. As part of the project, we will also study how extracellular vesicles (EVs) lead to immunomodulation in the GBM and how they can be used to study the progress of the clinical trial. The impact of these approaches may lead to a novel combinatorial immunotherapy of immunostimualtion with GMCI and inhibition of immunoevasion with immune checkpoint blockade.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA069246-23
Application #
9939475
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
23
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Ricklefs, Franz L; Alayo, Quazim; Krenzlin, Harald et al. (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4:eaar2766
Park, Jongmin; Im, Hyungsoon; Hong, Seonki et al. (2018) Analyses of Intravesicular Exosomal Proteins Using a Nano-Plasmonic System. ACS Photonics 5:487-494
Antoury, Layal; Hu, Ningyan; Balaj, Leonora et al. (2018) Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies. Nat Commun 9:3906
Zhou, Shuang; Appleman, Vicky A; Rose, Christopher M et al. (2018) Chronic platelet-derived growth factor receptor signaling exerts control over initiation of protein translation in glioma. Life Sci Alliance 1:e201800029
Min, Jouha; Nothing, Maria; Coble, Ben et al. (2018) Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS Nano 12:3378-3384
Lee, Kyungheon; Fraser, Kyle; Ghaddar, Bassel et al. (2018) Multiplexed Profiling of Single Extracellular Vesicles. ACS Nano 12:494-503
ReƔtegui, Eduardo; van der Vos, Kristan E; Lai, Charles P et al. (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9:175
Speranza, Maria-Carmela; Passaro, Carmela; Ricklefs, Franz et al. (2018) Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro Oncol 20:225-235
Boussiotis, Vassiliki A; Charest, Alain (2018) Immunotherapies for malignant glioma. Oncogene 37:1121-1141
Sahin, Ayguen; Sanchez, Carlos; Bullain, Szofia et al. (2018) Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma. PLoS One 13:e0199414

Showing the most recent 10 out of 223 publications