DNA interstrand crosslinks (ICLs) present a formidable block to DNA metabolic processes and must be repaired for cell survival. While much work has been done to define the mechanisms of ICL repair in bacteria and yeast, their processing in mammalian cells is not clearly defined. In the previous funding period, we demonstrated an nucleotide excision repair (NER)-dependent, error-prone repair of triplex-directed psoralen ICLs in mammalian cells. We also found that mismatch repair (MMR) proteins are involved in the response to and repair of psoralen ICLs in an error-free process. Our working hypothesis in this renewal application is that NER and mismatch repair (MMR) proteins interact in the recognition and initial processing of ICLs, while MMR proteins, independently of NER factors, are involved in ICL-induced cell-cycle regulation and apoptosis. The long-term objectives of the proposed research are to elucidate molecular mechanisms involved in the removal of DNA ICLs from the mammalian genome, to identify interactions among proteins from HR, MMR, and NER pathways in doing so, and to determine the roles of these proteins in other cellular responses to these lesions. Specifically we propose to: 1) test the hypothesis that proteins from the NER and MMR pathways interact during recognition and initial processing of ICLs;2) test the proposal that MLH1 functions in cellular checkpoint and apoptosis responses to DNA ICLs;3) target DNA ICLs to specific genomic sites in mutant mammalian cell lines to determine roles for DNA repair and recombination gene products in processing ICLs;and 4) assess the potential of targeted ICLs as antiproliferative therapeutic agents. The results obtained from these studies will provide valuable information to develop improved targeted strategies to control human cancers using ICL-inducing agents.

Public Health Relevance

This Research Project is part of a multicomponent Program Project with the theme of understanding the processing of complex DNA damage by mammalian cells. The significance to human health is to generate new knowledge and paradigms for modeling DNA repair of DNA interstrand crosslinks (ICLs), to improve therapy using ICL-inducing compounds, and to identify new therapeutic targets for cancer treatment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Tomida, Junya; Takata, Kei-Ichi; Bhetawal, Sarita et al. (2018) FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J 37:
Manandhar, Mandira; Lowery, Megan G; Boulware, Karen S et al. (2017) Transcriptional consequences of XPA disruption in human cell lines. DNA Repair (Amst) 57:76-90
Klages-Mundt, Naeh L; Li, Lei (2017) Formation and repair of DNA-protein crosslink damage. Sci China Life Sci 60:1065-1076
Malaby, Andrew W; Martin, Sara K; Wood, Richard D et al. (2017) Expression and Structural Analyses of Human DNA Polymerase ? (POLQ). Methods Enzymol 592:103-121
Mukherjee, Anirban; Vasquez, Karen M (2016) Tools to Study the Role of Architectural Protein HMGB1 in the Processing of Helix Distorting, Site-specific DNA Interstrand Crosslinks. J Vis Exp :
Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima et al. (2016) FANCI is a negative regulator of Akt activation. Cell Cycle 15:1134-43
Mukherjee, Anirban; Vasquez, Karen M (2016) HMGB1 interacts with XPA to facilitate the processing of DNA interstrand crosslinks in human cells. Nucleic Acids Res 44:1151-60
Lange, Sabine S; Tomida, Junya; Boulware, Karen S et al. (2016) The Polymerase Activity of Mammalian DNA Pol ? Is Specifically Required for Cell and Embryonic Viability. PLoS Genet 12:e1005759
Wood, Richard D; Doublié, Sylvie (2016) DNA polymerase ? (POLQ), double-strand break repair, and cancer. DNA Repair (Amst) 44:22-32
Tian, Yanyan; Paramasivam, Manikandan; Ghosal, Gargi et al. (2015) UHRF1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep 10:1957-66

Showing the most recent 10 out of 83 publications