The overall scientific goal of this ambitious program project is to develop highly innovative methods for cancer clinical trials that can hasten successful introduction of effective new therapies into practice. The method of approach is to leverage recent advances in statistical and computational science to create new clinical trial designs and data analysis tools that resolve many of the key scientific limitations of current clinical trial methodology. The projects focus on practical design and analysis problems in Phase II and Phase 111 clinical trials, the problem of missing data and efficient use of prognostic information, postmarketing surveillance and comparative effectiveness research using clinical trial data, pharmacogenetics and individualized therapies, and the potential of dynamic treatment regimens to improve cancer treatment. The proposed clinical trial design and analysis innovations have the potential to change the prevailing clinical trial paradigm and greatly increase the rate of discovery and translation of new treatments into clinical practice. Our multi-institutional approach includes an effective and energetic process for intense, coordinated implementation, communication and dissemination of results, including developing new software for practical implementation of the newly developed methods. Our comprehensive and novel approach will lead to significant improvements in cancer clinical trial practice that will result in improved health of cancer patients.

Public Health Relevance

The proposed program project aims to dramatically improve the efficiency of the cancer clinical trial process in order to improve the health and longevity of cancer patients. This is extremely important to public health since almost all biomedical advances in cancer treatment must pass through the clinical trial process before becoming accepted clinical practice.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-03
Application #
8245197
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (O1))
Program Officer
Wu, Roy S
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2012-04-25
Budget End
2013-03-31
Support Year
3
Fiscal Year
2012
Total Cost
$2,191,727
Indirect Cost
$312,438
Name
University of North Carolina Chapel Hill
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M et al. (2018) Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example. Comput Stat Data Anal 122:135-155
Wang, Chun; Chen, Ming-Hui; Wu, Jing et al. (2018) Online updating method with new variables for big data streams. Can J Stat 46:123-146
Ni, Ai; Cai, Jianwen (2018) Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters. Scand Stat Theory Appl 45:557-570
Pietryk, Edward W; Clement, Kiristin; Elnagheeb, Marwa et al. (2018) Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme. Reprod Toxicol 78:9-19
Jung, Sin-Ho (2018) Phase II cancer clinical trials for biomarker-guided treatments. J Biopharm Stat 28:256-263
Li, Tengfei; Xie, Fengchang; Feng, Xiangnan et al. (2018) Functional Linear Regression Models for Nonignorable Missing Scalar Responses. Stat Sin 28:1867-1886
Zhou, Qingning; Cai, Jianwen; Zhou, Haibo (2018) Outcome-dependent sampling with interval-censored failure time data. Biometrics 74:58-67
Psioda, Matthew A; Ibrahim, Joseph G (2018) Bayesian design of a survival trial with a cured fraction using historical data. Stat Med 37:3814-3831
Shi, Chengchun; Song, Rui; Lu, Wenbin et al. (2018) Maximin Projection Learning for Optimal Treatment Decision with Heterogeneous Individualized Treatment Effects. J R Stat Soc Series B Stat Methodol 80:681-702
Psioda, Matthew A; Ibrahim, Joseph G (2018) Bayesian clinical trial design using historical data that inform the treatment effect. Biostatistics :

Showing the most recent 10 out of 549 publications