Genomic techniques are revolutionizing the characterization of DNA alterations in cancer and their relation to different DNA repair mechanisms. The Computational Genomics Core provides a centralized structure to collect, analyzed and integrate data from all four projects. In addition to current already implemented computational pipelines, the core will develop new techniques that will be applied across projects, it will implement methods for data integration, provide quantitative training and advise in statistical questions.

Public Health Relevance

The Computational Genomic core (Core C) will provide state-of-the art data analysis and integration for all 4 projects. It has become apparent that a rate limiting factor of high- throughput, genomics analyses is the ability to efficiently analyze large and complex datasets. By centralizing all analyses under the Dr. Rabadan leadership, the Core will greatly enhance research productivity of all Projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA174653-06
Application #
9855797
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Oh, Julyun; Lee, So Jung; Rothstein, Rodney et al. (2018) Xrs2 and Tel1 Independently Contribute to MR-Mediated DNA Tethering and Replisome Stability. Cell Rep 25:1681-1692.e4
Billing, David; Horiguchi, Michiko; Wu-Baer, Foon et al. (2018) The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 72:127-139.e8
Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin et al. (2018) Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559:61-66
Gnügge, Robert; Oh, Julyun; Symington, Lorraine S (2018) Processing of DNA Double-Strand Breaks in Yeast. Methods Enzymol 600:1-24
Crowe, Jennifer L; Shao, Zhengping; Wang, Xiaobin S et al. (2018) Kinase-dependent structural role of DNA-PKcs during immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 115:8615-8620
Yu, Tai-Yuan; Kimble, Michael T; Symington, Lorraine S (2018) Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci U S A 115:E11961-E11969
Gnügge, Robert; Symington, Lorraine S (2017) Keeping it real: MRX-Sae2 clipping of natural substrates. Genes Dev 31:2311-2312
Liu, Xiangyu; Shao, Zhengping; Jiang, Wenxia et al. (2017) PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Nat Commun 8:13816
Kato, Niyo; Kawasoe, Yoshitaka; Williams, Hannah et al. (2017) Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Rep 21:1375-1385
Aparicio, Tomas; Gautier, Jean (2016) BRCA1-CtIP interaction in the repair of DNA double-strand breaks. Mol Cell Oncol 3:e1169343

Showing the most recent 10 out of 25 publications