The histone H3 mutations found recently found in cancers have dramatic downstream effects on the landscape of the epigenome ? chromatin state and DNA methylation ? with eventual secondary outcomes manifested in gene expression and cellular phenotypes. Modern functional genomics approaches provide invaluable tools to study the effects of this epigenome-mediated cascade. In this Core activity, we will establish a set of genomics tools and computation methods to elucidate the mechanisms through which H3 variants impact the epigenome, transcriptome, and finally the cell during neoplastic transformation.

Public Health Relevance

Cancer progression is associated with massive global aberrations of genome and epigenome organization. Modern genomics technologies have provided invaluable new insights into molecular mechanisms of cancers, including the discovery by our team members of the histone mutations that are the subject of this proposal. The establishment of this Core will provide team members with state of the art genomic and computational tools to unravel the mechanisms of action of histone mutations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA196539-01
Application #
8934750
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (M1))
Project Start
Project End
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
$361,057
Indirect Cost
$37,379
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Lin-Shiao, Enrique; Lan, Yemin; Coradin, Mariel et al. (2018) KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis. Genes Dev 32:181-193
Aebersold, Ruedi; Agar, Jeffrey N; Amster, I Jonathan et al. (2018) How many human proteoforms are there? Nat Chem Biol 14:206-214
Yuan, Zuo-Fei; Sidoli, Simone; Marchione, Dylan M et al. (2018) EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data. J Proteome Res 17:2533-2541
Zhang, Hanghang; Pandey, Somnath; Travers, Meghan et al. (2018) Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell 175:1244-1258.e26
Kreher, Jeremy; Takasaki, Teruaki; Cockrum, Chad et al. (2018) Distinct Roles of Two Histone Methyltransferases in Transmitting H3K36me3-Based Epigenetic Memory Across Generations in Caenorhabditis elegans. Genetics 210:969-982
Karch, Kelly R; Coradin, Mariel; Zandarashvili, Levani et al. (2018) Hydrogen-Deuterium Exchange Coupled to Top- and Middle-Down Mass Spectrometry Reveals Histone Tail Dynamics before and after Nucleosome Assembly. Structure 26:1651-1663.e3
Simithy, Johayra; Sidoli, Simone; Garcia, Benjamin A (2018) Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics 18:e1700309
Di Marcantonio, Daniela; Martinez, Esteban; Sidoli, Simone et al. (2018) Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clin Cancer Res 24:608-618
Valera, Elvis Terci; McConechy, Melissa K; Gayden, Tenzin et al. (2018) Methylome analysis and whole-exome sequencing reveal that brain tumors associated with encephalocraniocutaneous lipomatosis are midline pilocytic astrocytomas. Acta Neuropathol 136:657-660
Wojcik, Felix; Dann, Geoffrey P; Beh, Leslie Y et al. (2018) Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nat Commun 9:1394

Showing the most recent 10 out of 63 publications