Diabefic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) in the United States. Recently, antidiabetic thiazolidinediones (TZDs) and hypolipidemic fibrates which specifically bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma) and alpha (PPARalpha), respectively, have been found not only improve blood glucose and lipid levels but also slow the progression of DN in type 2 diabetes. Emerging evidence suggests that expression of the cytochrome P450 arachidonic acid (AA) monooxygenases (Cyp4a omega-hydroxylases and Cyp2c epoxygenases) is under control of PPARalpha and PPARgamma, and the Cyp4a-derived 20-HETE and the Cyp2c-derlved EETs may serve as engogenous ligands for both nuclear receptors. These data strongly suggests that the P450 AA monooxygenase metabolites 20-HETE and EETs may modulate PPAR function and play an important role in the pathogenesis of DN. The present proposal is designed to study the role of the P450 AA monooxygenases in the renoprotective effects of PPARalpha and PPARgamma agonists and to determine whether these enzymes and their metabolites are involved in the development of diabetic kidney disease. To achieve these aims we propose to: 1) characterize the role of Cyp4a and PPAR receptor interaction in DN. We will create a type 1 diabetic mouse (STZ-induced or Akita) and a type 2 diabetic mouse (db/db) deficient for Cyp4a10 and Cyp4a14 (Cyp4a10-/- and Cyp4a14-/-) or overexpressing Cyp4a12 (Cyp4a12 transgenic) to define the role of cyp4a enzymes in DN and the association between Gyp4a and the renoprotective effects of PPAR agonists;2) examine the role of Cyp2c44 and PPAR receptor interaction in DN. The effect of global Cyp2c44 delefion on the progression of DN will be examined in type 1 and type 2 diabetic mice. Type 1 and type 2 diabetic mice with glomerular Cyp2c44 gene deficiency will be made using the LoxP/Cre system and the progression of DN will be followed. The role of Cyp2c44 in the beneficial renal actions of PPAR agonists will also be determined. These studies should not only provide insights into the role of Cyp4a and Cyp2c in the pathogenesis of DN but also elucidate the possible underlying mechanisms by which EETs and HETEs affect DN.

Public Health Relevance

With the accelerating woridwide epidemic of type 2 diabetes, diabetic renal complications or diabetic nephropathy (DN) has become a serious public health concern. DN is the single most common cause of end stage renal disease (ESRD) in the US and more effective treatments are urgenfiy needed. Clarificafion of the role of the P450 enzymes in DN may lead to a novel strategy for the treatment of this kidney disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK038226-26
Application #
8379569
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
26
Fiscal Year
2012
Total Cost
$186,004
Indirect Cost
$66,669
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Elijovich, Fernando; Milne, Ginger L; Brown, Nancy J et al. (2018) Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 71:346-355
Sausville, Lindsay N; Gangadhariah, Mahesha H; Chiusa, Manuel et al. (2018) The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production. Cancer Res 78:4865-4877
Garcia, Victor; Gilani, Ankit; Shkolnik, Brian et al. (2017) 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (Gq) to Affect Vascular Function and Trigger Hypertension. Circ Res 120:1776-1788
Guo, Zhijun; Sevrioukova, Irina F; Denisov, Ilia G et al. (2017) Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chem Biol 24:1259-1275.e6
Zhang, Hui; Falck, John R; Roman, Richard J et al. (2017) Upregulation of 20-HETE Synthetic Cytochrome P450 Isoforms by Oxygen-Glucose Deprivation in Cortical Neurons. Cell Mol Neurobiol 37:1279-1286
Gangadhariah, Mahesha H; Dieckmann, Blake W; Lantier, Louise et al. (2017) Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 60:1066-1075
Shuey, Megan M; Billings 4th, Frederic T; Wei, Shouzou et al. (2017) Association of gain-of-function EPHX2 polymorphism Lys55Arg with acute kidney injury following cardiac surgery. PLoS One 12:e0175292
Fan, Fan; Pabbidi, Mallikarjuna R; Ge, Ying et al. (2017) Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. Am J Physiol Renal Physiol 312:F971-F981
Chen, Li; Joseph, Gregory; Zhang, Frank F et al. (2016) 20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol 83:57-65
Chiba, Takuto; Skrypnyk, Nataliya I; Skvarca, Lauren Brilli et al. (2016) Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 27:495-508

Showing the most recent 10 out of 376 publications