Numerous population and animal studies have established the atheroprotective properties of high density lipoproteins (HDL). In addition to its main antiatherogenic property of extracting cholesterol from peripheral cells and transferring it to the liver for excretion (reverse cholesterol transport, RCT), HDL also possesses anti-inflammatory and antioxidant properties. An emerging area in the field of HDL therapy is the development of apolipoprotein mimetic peptides. We have shown that orally administered apoA-l-mimetic peptides result in a dramatic reduction in the atherosclerotic lesion formation in atherosclerosis-sensitive mouse models despite no change in cholesterol levels. We hypothesize that this occurs via the formation of preB-HDL-like particles that possess increased paroxonase-1 (PON1) activity which are able to destroy lipid hydroperoxides (LOOH) and enhance reverse cholesterol transport, the major antiatherogenic properties of apoA-l. Thus antiatherogenic peptides modulate the properties of HDL such that proatherogenic HDL is converted into antiatherogenic HDL. We propose two mechanisms for the formation of both antiatherogenic a and preBHDL in the presence of antiatherogenic peptides: 1) enhanced interaction with ABCA1 to form increased levels of apo A-l-only containing particle with increased amounts of PON1 levels of preB-HDL particles;and 2) enhanced receptor (SRB-1) interaction of a-HDL particles to clear cholesteryl ester, thus regenerating active preB-HDL particles. We hypothesize that the antiatherogenic properties are governed by the ability of the peptide (peptide-lipid complexes) to recruit apoA-l, LOOH, and enzymes such as PON1 present in HDL. If, for example, PON1 is not active on these particles, this HDL is inflammatory since it possesses LOOH. To test our hypothesis we propose the following specific aims: 1a. Influence of peptide structure on the composition of HDL. 1b. Structural aspects of peptide association;2a. Antiatherogenic potential of each peptide. 2b. Testing of selected peptides for their antiatherogenic properties in atherosclerosis sensitive mouse models. We will use physical, physico-chemical, in vitro cell culture and in vivo studies in animal models of atherosclerosis to characterize the structure and function of peptidemediated HDL changes that are related to antiatherogenic properties. These studies will for the first time enable us to understand the detailed structural aspects of peptide-modulated antiatherogenic HDL and the mechanism of antiatherogenic and anti-inflammatory actions of apoA-l-mimetic peptides. Furthermore, these studies will lead to the design of simple molecules with increased antiatherogenic and anti-inflammatory potencies and potentially lead to novel modalities to ameliorate atherosclerosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
United States
Zip Code
White, C Roger; Giordano, Samantha; Anantharamaiah, G M (2016) High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms. Chem Phys Lipids 199:161-169
Namiri-Kalantari, Ryan; Gao, Feng; Chattopadhyay, Arnab et al. (2015) The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. Biofactors 41:153-9
White, C Roger; Goldberg, Dennis I; Anantharamaiah, G M (2015) Recent developments in modulating atherogenic lipoproteins. Curr Opin Lipidol 26:369-75
Datta, Geeta; Kramer, Philip A; Johnson, Michelle S et al. (2015) Bioenergetic programming of macrophages by the apolipoprotein A-I mimetic peptide 4F. Biochem J 467:517-27
Navab, Mohamad; Chattopadhyay, Arnab; Hough, Greg et al. (2015) Source and role of intestinally derived lysophosphatidic acid in dyslipidemia and atherosclerosis. J Lipid Res 56:871-87
Segrest, Jere P; Jones, Martin K; Catte, Andrea et al. (2015) A robust all-atom model for LCAT generated by homology modeling. J Lipid Res 56:620-34
Guo, Lilu; Chen, Zhongyi; Amarnath, Venkataraman et al. (2015) Isolevuglandin-type lipid aldehydes induce the inflammatory response of macrophages by modifying phosphatidylethanolamines and activating the receptor for advanced glycation endproducts. Antioxid Redox Signal 22:1633-45
Segrest, Jere P; Jones, Martin K; Catte, Andrea et al. (2015) Surface Density-Induced Pleating of a Lipid Monolayer Drives Nascent High-Density Lipoprotein Assembly. Structure 23:1214-26
Segrest, Jere P; Jones, Martin K; Shao, Baohai et al. (2014) An experimentally robust model of monomeric apolipoprotein A-I created from a chimera of two X-ray structures and molecular dynamics simulations. Biochemistry 53:7625-40
Sharifov, Oleg F; Xu, Xin; Gaggar, Amit et al. (2014) L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 37:1401-12

Showing the most recent 10 out of 197 publications