The diagnosis of diastolic congestive heart failure (CHF) can be made when patients have symptoms and signs of fluid overload, a normal ejection fraction, and pronounced abnormalities in diastolic function. In a general population of patients with CHF, the prevalence of diastolic CHF is 30-35% and the 5 year mortality rate is 25%. In patients over 70 years old, the prevalence of diastolic CHF increases to 50% and the 5 year mortality rate approaches 50%. Therefore, diastolic CHF is a major health care problem, especially in our aging population. Despite its importance, the basic underlying mechanisms that cause diastolic CHF and the impact that aging makes on these mechanisms are not completely understood. For these reasons, the primary focus of my research has been to define the mechanisms, which cause abnormal diastolic function. Diastolic CHF develops when there has been a fundamental alteration in the passive material properties of the cardiac muscle tissue (i.e., increased diastolic myocardial stiffness). Three of the possible mechanisms which may cause this increase in myocardial stiffness include changes in the cardiac muscle cell (cardiocyte), changes in the extracellular matrix (ECM), and changes in neurohumoral activation. I believe that changes in each of these three mechanisms, individually and in combination, cause the abnormalities in diastolic function that lead to diastolic CHF. Studies examining the ECM and neurohumoral activation are the subject of my ongoing Department of Veterans Affairs Merit Review grant. Studies examining mechanisms within the cardiocyte will be the focus of this Program Project Proposal. The purpose of Project 6 is to prove the hypothesis that basic cardiocyte mechanisms play a significant cause and effect role in the development of the diastolic CHF. This hypothesis will be tested using three specific aims: 1) Determine whether, and to what degree, changes in the viscoelastic properties of the cardiocyte occur in, and are causally related to the increased myocardial stiffness produced by pressure-overload hypertrophy (POH) and advanced age, 2) Define the basic cellular mechanisms which cause increased cardiocyte viscoelastic stiffness, and 3) Determine whether transgenic modulation of these basic cellular mechanisms will prevent or correct the increases in diastolic stiffness produced by POH and advanced age.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL048788-11
Application #
6808271
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2003-08-01
Project End
2008-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
11
Fiscal Year
2003
Total Cost
$161,541
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin et al. (2015) A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 116:2793-803
Baicu, Catalin F; Zhang, Yuhua; Van Laer, An O et al. (2012) Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload. Am J Physiol Heart Circ Physiol 303:H234-40
McDermott, Paul J; Baicu, Catalin F; Wahl, Shaun R et al. (2012) In vivo measurements of the contributions of protein synthesis and protein degradation in regulating cardiac pressure overload hypertrophy in the mouse. Mol Cell Biochem 367:205-13
Baicu, Catalin F; Li, Jiayu; Zhang, Yuhua et al. (2012) Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol 303:H1128-34
Mukherjee, Rupak; Snipes, Jonathan M; Saunders, Stuart M et al. (2012) Discordant activation of gene promoters for matrix metalloproteinases and tissue inhibitors of the metalloproteinases following myocardial infarction. J Surg Res 172:59-67
McCurdy, Sarah M; Dai, Qiuxia; Zhang, Jianhua et al. (2011) SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 301:H497-505
Suryakumar, Geetha; Kasiganesan, Harinath; Balasubramanian, Sundaravadivel et al. (2010) Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. J Cardiovasc Pharmacol 55:567-73
Cheng, Guangmao; Takahashi, Masaru; Shunmugavel, Anandakumar et al. (2010) Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 285:38125-40
Mani, Santhosh K; Egan, Erin A; Addy, Benjamin K et al. (2010) beta-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. J Mol Cell Cardiol 48:342-51
Bradshaw, Amy D; Baicu, Catalin F; Rentz, Tyler J et al. (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 298:H614-22

Showing the most recent 10 out of 136 publications