The overall hypothesis of Project #3 is that the accelerated atherogenesis associated with diabetes is due to decreased production, or decreased bioactivity of endothelial-derived NO.
In aim #1 we will determine if diabetes accelerates atherogenesis in the thoracic aorta of diabetic rabbits fed an atherogenic diet by decreasing the production or bioactivity of NO. Lesion size by morphometry will be assessed at 5 and 10 weeks of hyperlipidemic diet. Bioactivity of NO will be measured by assessing endothelium- dependent and exogenous NO-induced relaxations and increases in cGMP in the two arteries. NO production will be assessed by chemiluminescence. To determine the role of NO, NO will be modulated in vivo by chronic administration of NO synthase inhibitors and NO donors. The role of increased oxidative stress in decreasing NO bioactivity will be determined by measuring superoxide anion production, determining the effect of superoxide anion scavengers, and treating rabbits with vitamin E and probucol. Lipid peroxidation and rabbit lipoprotein oxidation will be measured in collaboration with Project #1. The role of vasoconstrictor prostanoids will be evaluated by treating rabbits with indomethacin and a thromboxane A2 receptor antagonist. The influence of insulin and an aldose reductase inhibitor on atherogenesis and NO bioactivity will also be determined.
In aim #2 we will determine if adhesion molecule expression and monocyte adhesion is increased in diabetic rabbits and in cultured endothelial cells exposed to elevated glucose as a result of decreased synthesis or bioactivity of NO. Adhesion of monocytes will be quantitated, and surface expression of adhesion molecules including VCAM-l, ICAM-I and ELAM-l, will be measured by a fluorescent tagged ELISA assay in cultured cells and in Hautchen preparations of the aorta. Alterations in NO synthesis by elevated glucose will be studied in collaboration with Project #2. Bioactivity of NO will be determined independently by changes in endothelial cGMP levels. In collaboration with Project #1 the combined influence of oxidized lipoproteins and hyperglycemia will be determined in cultured cells. The bioactivity of NO will be modulated with NO inhibitors and donors, and antioxidants. The proposed studies will be important to the program in producing an animal model in which to test the hypothesis that impaired NO function is related to accelerated atherosclerosis in diabetes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL055854-01A1
Application #
5214418
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Ying, Jia; Clavreul, Nicolas; Sethuraman, Mahadevan et al. (2007) Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 43:1099-108
Heydrick, Stanley J; Weiss, Norbert; Thomas, Shane R et al. (2004) L-Homocysteine and L-homocystine stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells. Free Radic Biol Med 36:632-40
Gupta, Sandeep; Chough, Eugene; Daley, Jennifer et al. (2002) Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na+-K+-ATPase activity. Am J Physiol Cell Physiol 282:C560-6
Itani, Samar I; Ruderman, Neil B; Schmieder, Frank et al. (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005-11
Dagher, Z; Ruderman, N; Tornheim, K et al. (2001) Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ Res 88:1276-82
Gokce, N; Duffy, S J; Hunter, L M et al. (2001) Acute hypertriglyceridemia is associated with peripheral vasodilation and increased basal flow in healthy young adults. Am J Cardiol 88:153-9
Munzel, T; Keaney Jr, J F (2001) Are ACE inhibitors a ""magic bullet"" against oxidative stress? Circulation 104:1571-4
Huang, A; Xiao, H; Samii, J M et al. (2001) Contrasting effects of thiol-modulating agents on endothelial NO bioactivity. Am J Physiol Cell Physiol 281:C719-25
Duffy, S J; Biegelsen, E S; Holbrook, M et al. (2001) Iron chelation improves endothelial function in patients with coronary artery disease. Circulation 103:2799-804
Adachi, T; Matsui, R; Weisbrod, R M et al. (2001) Reduced sarco/endoplasmic reticulum Ca(2+) uptake activity can account for the reduced response to NO, but not sodium nitroprusside, in hypercholesterolemic rabbit aorta. Circulation 104:1040-5

Showing the most recent 10 out of 23 publications