Abnormalities in the regulation of coagulation and thrombosis play a major role in the pathogenesis of many heart, lung, and blood diseases. This program project will integrate the research efforts of a number of independent investigators to explore the molecular basis for selected disorders of coagulation and thrombosis and the role of hemostatic balance in vascular disease pathogenesis. The PPG builds on the existing strength at the University of Michigan in human molecular genetics and cell and molecular biology of blood coagulation. The individual projects in this proposal emphasize the use of new technologies to provide improved biologic insight and develop new treatments for hemorrhage, thrombosis and related cardiovascular disorders. The 4 individual projects contained in this PPG will: 1) apply transgenic animal models to study factor V function in vivo; 2) explore the role of ER processing in coagulation FVIII and FV biosynthesis and identify the molecular basis for combined deficiency of factor V and factor VIII; 3) apply genetic models to study PAI-1 function in the vasculature and its role in the pathogenesis of atherosclerosis; and 4) study the regulation of fibrinolysis at sites of arterial injury. The PPG will support the development of 3 cores: A) the Mouse Coagulation Laboratory core; B) the DNA core; ; C) The PPG will aim to increase interaction and collaboration between individual project participants, as well as among the large number of other laboratories at the University of Michigan already engaged in research on coagulation, thrombosis and vascular disease. We anticipate that the overall program resulting from the combined efforts of all participants will significantly exceed the sum of individual parts.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-PPG-D (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Internal Medicine/Medicine
Schools of Medicine
Ann Arbor
United States
Zip Code
Nie, Chao; Wang, Huimin; Wang, Rui et al. (2018) Dimeric sorting code for concentrative cargo selection by the COPII coat. Proc Natl Acad Sci U S A 115:E3155-E3162
Tomberg, Kärt; Westrick, Randal J; Kotnik, Emilee N et al. (2018) Whole exome sequencing of ENU-induced thrombosis modifier mutations in the mouse. PLoS Genet 14:e1007658
Khoriaty, Rami; Hesketh, Geoffrey G; Bernard, Amélie et al. (2018) Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 115:E7748-E7757
Ji, Y; Adeola, O; Strawn, T L et al. (2017) Recombinant soluble apyrase APT102 inhibits thrombosis and intimal hyperplasia in vein grafts without adversely affecting hemostasis or re-endothelialization. J Thromb Haemost 15:814-825
Westrick, Randal J; Tomberg, Kärt; Siebert, Amy E et al. (2017) Sensitized mutagenesis screen in Factor V Leiden mice identifies thrombosis suppressor loci. Proc Natl Acad Sci U S A 114:9659-9664
Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J et al. (2017) SEC23B is required for pancreatic acinar cell function in adult mice. Mol Biol Cell 28:2146-2154
Ji, Yan; Weng, Zhen; Fish, Philip et al. (2016) Pharmacological Targeting of Plasminogen Activator Inhibitor-1 Decreases Vascular Smooth Muscle Cell Migration and Neointima Formation. Arterioscler Thromb Vasc Biol 36:2167-2175
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer et al. (2016) Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. Sci Rep 6:27802
Khoobchandani, Menka; Katti, Kavita; Maxwell, Adam et al. (2016) Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis. Int J Mol Sci 17:316
Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin et al. (2016) SM-TF: A structural database of small molecule-transcription factor complexes. J Comput Chem 37:1559-64

Showing the most recent 10 out of 187 publications