The molecular mechanism by which cMyBP-C exerts its effect on actomyosin force power generating system remains largely undefined. With its low ratio relative to myosin and it being located in distinct regions of the thick filament, we will determine in this Project how cMyBP-C's modulates actomyosin's power generation by either interacting with a limited population of crossbridges or whether it cooperatively affects all crossbridges within the thick filament. This project serves as a physiological bridge between the animal (Project #3, Robbins), whole heart (Core B, Kass) and fiber (Core B, Palmer, Maughan) studies.
In Aim #1, we will use state-of-the-art single molecule biophysical techniques (e.g. laser trap assay) to probe the effect that cMyBP-C exerts on actomyosin function along the length a single native thick filament isolated from transgenic mice designed in Project #3 (Robbins) and produced in Core C (Robbins).
In Aim #2, we will use expressed N-terminal fragments of cMyBP-C produced in Core C (Robbins) to probe the binding affinity of these fragments for actin and/or myosin. Thus, these data and that obtained in Project #1 (Craig), Project #3 (Robbins) and Core B (Palmer) will help define cMyBP-C's specific binding partners (i.e. myosin and/or actin) and thus its physiological site of action. In combination with motility and laser trap assays, we will determine if the N-terminus of CMyBP-C limits myosin's attachment rate to actin or if it directly affects myosin's inherent molecular mechanics and kinetics. Finally, in Aim #3 we will characterize how phosphorylation regulates cMyBP-C action. Using transgenic mouse models (Core C, Robbins) expressing cMyBP C mutants having alanine or aspartic acid substitutions for one or more of the three phosphorylatable serines, we will determine the functional importance of phosphorylation and the hierarchical importance of each site using native thick filaments containing mutant cMyBP-C as well as N-terminal fragments having the same mutations. Once the molecular mechanism of cMyBP-C is defined, the potential for novel therapeutics or clinical intervention may be possible in cases of heart failure associated with genetic mutations in cMyBP-C.

Public Health Relevance

cMyBP-C is critical to normal cardiac performance. Using single molecule biophysical techniques to characterize the molecular mechanism of cMyBP-C function, the results may provide the potential for novel therapies in cases of heart failure associated with genetic mutations in cMyBP-C.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Vermont & St Agric College
United States
Zip Code
Singh, Sonia R; Robbins, Jeffrey (2018) Desmin and Cardiac Disease: An Unfolding Story. Circ Res 122:1324-1326
Lin, Brian Leei; Li, Amy; Mun, Ji Young et al. (2018) Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner. Sci Rep 8:2604
Kensler, Robert W; Craig, Roger; Moss, Richard L (2017) Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci U S A 114:E1355-E1364
McLendon, Patrick M; Davis, Gregory; Gulick, James et al. (2017) An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circ Res 121:604-616
Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne et al. (2016) In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin. Pflugers Arch 468:1685-95
Gupta, Manish K; McLendon, Patrick M; Gulick, James et al. (2016) UBC9-Mediated Sumoylation Favorably Impacts Cardiac Function in Compromised Hearts. Circ Res 118:1894-905
Warshaw, David M (2016) HEART DISEASE. Throttling back the heart's molecular motor. Science 351:556-7
James, Jeanne; Robbins, Jeffrey (2016) Healing a Heart Through Genetic Intervention. Circ Res 118:920-2
Mun, Ji Young; Kensler, Robert W; Harris, Samantha P et al. (2016) The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position. J Mol Cell Cardiol 91:141-7
Previs, Michael J; Mun, Ji Young; Michalek, Arthur J et al. (2016) Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 113:3239-44

Showing the most recent 10 out of 168 publications