The Program Project grant (yr 11-15) """"""""Signaling of Endothelial Permeability and Lung Vascular Injury"""""""" addresses the critical mechanisms that mediate the loss of pulmonary vascular barrier function, in turn, inducing pulmonary edema. We have approached this subject in a multidisciplinary manner bringing to bear technologies of molecular and cellular biology, biochemistry, and cell imaging and functional analysis of the regulation of lung vascular barrier function in the mouse model. Project 1 addresses the potentially important and novel relationship between endothelial caveolin-1, the structural and signaling protein of caveolae, and adherens junctions (AJs), the structures known to regulate permeability of the junctions based on the postulate of a cross-talk between caveolae and AJs via eNOS. Project 2 addresses the mechanisms of a newly identified post-translational activation of iNOS activity and how the inordinately high-output NO generated regulates lung endothelial barrier function. Project 3 focuses on the signaling mechanisms by which TRPC6 (a prototypic receptor-operated calcium channel) activates both RhoA and the endothelial MLCK isoform to increase lung endothelial permeability. Project 4 addresses the fundamental observation of increased binding affinity on endothelial cell plasmalemma of the adhesive protein ICAM-1 and the feed-forward signaling mechanism of ICAM-1 activation of caveolae-mediated transcytosis and lung endothelial hyper-permeability. Our overall goal on the basis of these four highly interactive projects is to define signaling pathways regulating the increase in lung vascular permeability so that rational targets are identified for therapeutic purposes. Moreover the depth of understanding to be gained of the signaling pathways mediating the increase in lung vascular permeability will provide novel insights into the mechanisms of protein-rich pulmonary edema and ARDS.

Public Health Relevance

This renewal program project application consisting of 4 highly interactive projects deals with defining signaling mechanisms regulating the permeability of the lung endothelial barrier at the level of interendothelial junctions and via caveolae-mediated transcytosis. The focus of the work relates to the lung endothelium in which studies will delineate the signaling pathways to establish their role in pathophysiology of acute lung injury and its treatment.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-14
Application #
8620689
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Xiao, Lei
Project Start
2001-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
14
Fiscal Year
2014
Total Cost
$4,248,395
Indirect Cost
$1,542,411
Name
University of Illinois at Chicago
Department
Pharmacology
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Potje, Simone R; Chen, Zhenlong; Oliveira, Suellen D'Arc S et al. (2017) Nitric oxide donor [Ru(terpy)(bdq)NO]3+ induces uncoupling and phosphorylation of endothelial nitric oxide synthase promoting oxidant production. Free Radic Biol Med 112:587-596
Tsang, Kit Man; Hyun, James S; Cheng, Kwong Tai et al. (2017) Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1?. Stem Cell Reports 9:796-806
Marsboom, Glenn; Chen, Zhenlong; Yuan, Yang et al. (2017) Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell 28:1177-1185
Andresen Eguiluz, Roberto C; Kaylan, Kerim B; Underhill, Gregory H et al. (2017) Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity. Biomaterials 140:45-57

Showing the most recent 10 out of 200 publications