Project 3 examines adaptive changes in the metabolic support of contractile function subsequent to sarcomere remodeling. This project relates to the central theme of the program project, by investigating metabolic remodeling in hearts with altered myofilament sensitivity to Ca[2+], and the potential to reciprocally influence myofilament activity through altered metabolic signaling. The overall objective is to determine if myofilament modifications induce adaptive, maladaptive, and/or cardioprotective shifts in metabolic pathways. The work examines whether the pathophysiological stress induces reciprocal changes in both metabolic activity, through AMPK-linked shifts in competing modes of substrate oxidation for energy production, and contractile function, through resulting affects of acyl-derivatives on contractile function via phosphorylation of sarcomeric proteins. The primary hypothesis is that: Chemical modifications of the contractile/regulatory proteins, specifically within troponin and possibly the regulatory myosin light chain, influence metabolic phenotype which reciprocally effects sarcomere activity by altering the chemical environment of the cytosol. We propose three specific aims: 1) Determine the balance between fatty acid oxidation and storage in pressure overloaded, transgenic mouse hearts that express the fetal/neonatal isoform of troponin I, ssTnl, an apparent model of stress resistance, and test for attenuation of potentially maladaptive changes in oxidative metabolism that occur during pressure overload cardiac. 2) Elucidate alterations in the metabolic support of contractile function at baseline and during B-adrenergic stress, in mouse heart models of myofilament modifications that will or will not develop familial hypertrophic cardiomyopathy (FHC), and also display altered AMPK activation 3) Determine the metabolic responses to rescue of hearts from TG mice with high Ca[2+] sensitivity and FHC, by crossing with a mouse heart model of desensitized myofilaments.
These aims will be accomplished though a unique approach, combining NMR determinations of metabolic flux and enzyme expression with experiments on myofilament function and proteomics. The experimental plan will enable study of the three-way link between metabolic flux, AMPK activation, and Ca[2+] sensitivity of the sarcomeres in the pathogenesis of cardiomyopathy.

Public Health Relevance

The research investigates poorly understood mechanisms that may contribute to the development of heart failure. Specifically, results will define the changes in how the diseased heart muscle consumes and stores fuels, such carbohydrates and fats, in response to impaired cardiac function and the reciprocal effects of such metabolic changes on contraction of heart muscle.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL062426-15
Application #
8629551
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
15
Fiscal Year
2014
Total Cost
$386,168
Indirect Cost
$100,547
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Le, Long V; Mohindra, Priya; Fang, Qizhi et al. (2018) Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials 169:11-21
Mkrtschjan, Michael A; Gaikwad, Snehal B; Kappenman, Kevin J et al. (2018) Lipid signaling affects primary fibroblast collective migration and anchorage in response to stiffness and microtopography. J Cell Physiol 233:3672-3683
Yan, Jiajie; Thomson, Justin K; Zhao, Weiwei et al. (2018) Role of Stress Kinase JNK in Binge Alcohol-Evoked Atrial Arrhythmia. J Am Coll Cardiol 71:1459-1470
Bohlooli Ghashghaee, Nazanin; Li, King-Lun; Solaro, R John et al. (2018) Role of the C-terminus mobile domain of cardiac troponin I in the regulation of thin filament activation in skinned papillary muscle strips. Arch Biochem Biophys 648:27-35
Yan, Jiajie; Zhao, Weiwei; Thomson, Justin K et al. (2018) Stress Signaling JNK2 Crosstalk With CaMKII Underlies Enhanced Atrial Arrhythmogenesis. Circ Res 122:821-835
Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas et al. (2018) Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 114:345-353
Dvornikov, Alexey V; de Tombe, Pieter P; Xu, Xiaolei (2018) Phenotyping cardiomyopathy in adult zebrafish. Prog Biophys Mol Biol 138:116-125
Ferrantini, Cecilia; Coppini, Raffaele; Pioner, Josè Manuel et al. (2017) Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models. J Am Heart Assoc 6:
Alves, Marco L; Warren, Chad M; Simon, Jillian N et al. (2017) Early sensitization of myofilaments to Ca2+ prevents genetically linked dilated cardiomyopathy in mice. Cardiovasc Res 113:915-925
Zak, Taylor J; Koshman, Yevgenia E; Samarel, Allen M et al. (2017) Regulation of Focal Adhesion Kinase through a Direct Interaction with an Endogenous Inhibitor. Biochemistry 56:4722-4731

Showing the most recent 10 out of 283 publications