The overall goal of this Program is to conduct genome-wide analysis of genes encoding inflammatory mediators expressed by blood cells. The role of the Animal Model Core is: (i) to score chimeric animals generated in Project 1 for germline transmission of the targeted allele, evaluate homozygous mutants for embryonic or neonatal lethality, and establish a small breeding colony of homozygous mutant animals and (ii) to screen mice containing germline transmission for alterations in blood cell numbers and cellular responses to pro-inflammatory agonists. Moreover, expression of a green fluorescent (GFP) reporter gene construct inserted by the targeting vector will be analyzed to study cell- type specific expression of the disrupted genes. The Animal Models Core will interact closely with the member of the Program Steering Committee. The Animal Models Core will play a key role in the generation of mutant animals, their initial phenotypic characterization, and their distribution among the different projects of the Program. Results will be posted on

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Hawiger, J; Veach, R A; Zienkiewicz, J (2015) New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost 13:1743-56
Lin, Qing; Liu, Yan; Moore, Daniel J et al. (2012) Cutting edge: the ""death"" adaptor CRADD/RAIDD targets BCL10 and suppresses agonist-induced cytokine expression in T lymphocytes. J Immunol 188:2493-7
Guo, Changying; Gerasimova, Tatiana; Hao, Haiping et al. (2011) Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus. Cell 147:332-43
Farley, Adam R; Powell, David W; Weaver, Connie M et al. (2011) Assessing the components of the eIF3 complex and their phosphorylation status. J Proteome Res 10:1481-94
Olivares-Villagómez, Danyvid; Van Kaer, Luc (2010) TL and CD8??: Enigmatic partners in mucosal immunity. Immunol Lett 134:1-6
Moore, Daniel J; Zienkiewicz, Jozef; Kendall, Peggy L et al. (2010) In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes. PLoS One 5:e13235
Liu, Danya; Zienkiewicz, Jozef; DiGiandomenico, Antonio et al. (2009) Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor. Mol Ther 17:796-802
DiGiandomenico, Antonio; Wylezinski, Lukasz S; Hawiger, Jacek (2009) Intracellular delivery of a cell-penetrating SOCS1 that targets IFN-gamma signaling. Sci Signal 2:ra37
Arnett, Diana R; Jennings, Jennifer L; Tabb, David L et al. (2008) A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Mol Cell Proteomics 7:2090-106
Burg, John S; Powell, David W; Chai, Raymond et al. (2008) Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast. Cell Metab 8:522-31

Showing the most recent 10 out of 95 publications