Recovery of endothelial integrity after lung vascular injury is a pooriy understood aspect of lung injury. The focus of Project 4 in the context of the Program Project is to elucidate the molecular mechanisms of endothelial barrier repair following lung vascular injury, and thereby to identify novel approaches that prevent or reverse lung vascular injury associated with sepsis-induced lung injury. Studies will address the role of FoxMI, a member of the Forkhead box (Fox) transcription factor family, which we have demonstrated to be required for proliferation of endothelial cells, and to mediate subsequent endothelial repair following lung vascular injury. Our novel Supporting Data show that FoxMI also regulates de novo beta-catenin synthesis (an adherens junction protein) and may thus induce the re-annealing of endothelial adherens junctions to reform a restrictive endothelial barrier. In addition, our Supporting Data show that endothelial injury itself is a factor activating expression of FoxMI secondary to nuclear translocation of beta-catenin, and activation of the LEF/TCF transcriptional machinery. In Project 4, we will test the hypothesis that FoxMI induction of beta-catenin expression as well as beta-catenin induction of FoxMI are both required for restoration of lung endothelial integrity following lung vascular injury. The studies will address the following Specific Aims.
In Aim 1 we will determine the role of FoxMI-induced beta-catenin expression in restoring endothelial barrier function following lung vascular injury. We will define mechanisms by which FoxMI induces the expression of beta-catenin and resultant formation of the restrictive lung endothelial barrier.
In Aim 2 we will address the role of beta-catenin in the mechanism of FoxMI expression and whether beta-catenin-mediated FoxMI expression contributes to the mechanism of endothelial regeneration following lung vascular injury.
In Aim 3 we will delineate the signaling mechanism of beta-catenin regulation of FoxMI expression through GSK-3, and its role in mediating lung endothelial repair. With the completion of these studies, we will have identified the critical role of the cross-talk between FoxMI and beta-catenin in the mechanism of lung vascular repair, and with this understanding we think that we will be able to provide novel approaches for the treatment of acute lung injury.

Public Health Relevance

The overall objective of the proposed studies of Project 4 is to elucidate the molecular mechanisms of endothelial barrier repair following lung vascular injury, and thereby to identify novel approaches that prevent or reverse lung vascular injury associated with sepsis-induced lung injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL077806-06
Application #
8005127
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2010-08-01
Project End
2015-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
6
Fiscal Year
2010
Total Cost
$328,130
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Dai, Zhiyu; Zhu, Maggie M; Peng, Yi et al. (2018) Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. Am J Respir Crit Care Med 198:788-802
Yamada, Kaori H; Kang, Hojin; Malik, Asrar B (2017) Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. Am J Pathol 187:214-224
Zhang, Lianghui; Jambusaria, Ankit; Hong, Zhigang et al. (2017) SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+Progenitor Cells. Circulation 135:2505-2523
Yazbeck, Pascal; Tauseef, Mohammad; Kruse, Kevin et al. (2017) STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry. Sci Rep 7:42758
Wu, Chaomin; Evans, Colin E; Dai, Zhiyu et al. (2017) Lipopolysaccharide-induced endotoxemia in corn oil-preloaded mice causes an extended course of lung injury and repair and pulmonary fibrosis: A translational mouse model of acute respiratory distress syndrome. PLoS One 12:e0174327
Dai, Zhiyu; Zhao, You-Yang (2017) Discovery of a murine model of clinical PAH: Mission impossible? Trends Cardiovasc Med 27:229-236
Du, Xueke; Jiang, Chunling; Lv, Yang et al. (2017) Isoflurane promotes phagocytosis of apoptotic neutrophils through AMPK-mediated ADAM17/Mer signaling. PLoS One 12:e0180213
Evans, Colin E; Zhao, You-Yang (2017) Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 312:L441-L451

Showing the most recent 10 out of 103 publications