The objective of Administrative Core (Core A) is to provide administrative support for the efficient functioning of the Program Project. The Core Leader, Dr. Asrar Malik, will be responsible for evaluating the progress of the Program Project as a whole and of the individual research projects. The Administrative Core will coordinate the inter-project and inter-departmental collaborative arrangements and develop new arrangements as deemed necessary for the scientific progress of the Program Project. The Administrative Core will also provide the Projects and Cores with a monthly review of all expenditures and will interact with University Grants and Accounting offices concerning grant budgets. The administrative support provided by the Administrative Core will reconcile all budgets of the Projects and the Cores. In addition, the Administrative Core will be responsible for organizing various weekly meetings and seminars. The Administrative Core will be used equally by the 4 Projects. The Program Director is assisted by a half-time Administrative Assistant/Budget Manager (Mr. Ed Bruno) who handles day-to-day details of program coordination and management, including weekly research seminars, meetings of the prindpal investigators and core leaders and meetings of consultants, reports and correspondence related to the Program Project, and records of purchases and expenditures. The Administrative Assistant (40%) also above maintains the accounting forthe budgets and provides this information to principal investigators and core leaders. The Administrative Assistant works closely with the Accounting Office of the University on all budgetary and personnel issues.

Public Health Relevance

The Administrative Core will provide support for the four projects of the Program. This will include but not be limited to the following: organizing weekly meetings and seminars, filing Progress Reports, providing monthly expenditure reports to the projects and cores.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL077806-06
Application #
8005128
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2010-08-01
Project End
2015-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
6
Fiscal Year
2010
Total Cost
$91,099
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Dai, Zhiyu; Zhu, Maggie M; Peng, Yi et al. (2018) Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. Am J Respir Crit Care Med 198:788-802
Du, Xueke; Jiang, Chunling; Lv, Yang et al. (2017) Isoflurane promotes phagocytosis of apoptotic neutrophils through AMPK-mediated ADAM17/Mer signaling. PLoS One 12:e0180213
Evans, Colin E; Zhao, You-Yang (2017) Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 312:L441-L451
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Soni, Dheeraj; Regmi, Sushil C; Wang, Dong-Mei et al. (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003-L1017
Di, Anke; Kiya, Tomohiro; Gong, Haixia et al. (2017) Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages. J Cell Sci 130:735-744
Reddy, Sekhar P; Mehta, Dolly (2017) Lung Interstitial Macrophages Redefined: It Is Not That Simple Anymore. Am J Respir Cell Mol Biol 57:135-136
Cheng, Kwong Tai; Xiong, Shiqin; Ye, Zhiming et al. (2017) Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127:4124-4135

Showing the most recent 10 out of 103 publications