Project 1 will investigate the regulation of inflammation and lipid homeostasis in the context of macrophage foam cell formation and the pathogenesis of atherosclerosis. These studies will leverage our recent discovery that desmosterol, an intermediate in the cholesterol biosynthetic pathway, unexpectedly plays a key role in integration of the homeostatic response to excess cholesterol by activating LXR target genes required for cholesterol efflux, suppressing SREBP target genes involved in cholesterol and fatty acid biosynthesis, and inhibiting inflammatory responses by LXR-dependent and independent mechanisms. These findings have a number of unanticipated implications for understanding the pathophysiology of atherosclerosis and suggest new therapeutic approaches.
In Specific Aim 1, we will test the hypothesis that de-compensation of cholesterol homeostasis and 'expression of genes that amplify inflammatory responses in macrophage foam cells results from extrinsic, pro-inflammatory signals that are generated in the artery wall and induce TLR signaling.
In Specific Aim 2, we will test the hypothesis that in addition to serving as TLR-induced transcriptional activators of inflammatory-response genes, NFKB and IRF3 mediate TLR? dependent suppression of LXRs. Delineation of the mechanisms by which NFKB and IRF3 inhibit the lipid homeostatic and anti-inflammatory activities of LXRs may suggest new approaches for therapeutic intervention.
In Specific Aim 3, we will test the hypothesis that increasing endogenous levels of desmosterol or mimicking its activities will promote sterol excretion and inhibit the development of atherosclerosis. Conventional LXR ligands promote cholesterol efflux and inhibit atherosclerosis in mice, but are not useful drugs because they induce the expression of SREBP1c and cause marked hypertriglyceridemia. In contrast, desmosterol activates LXRs but suppresses SREBP processing. In this aim, we will investigate whether treatment with a putative desmosterol mimetic or raising endogenous desmosterol levels can be used as approaches to restore cholesterol homeostasis in lesion macrophages without causing adverse effects on circulating lipoprotein levels.

Public Health Relevance

Atherosclerosis remains a major cause of morbidity and mortality in industrialized societies. Although reduction of circulating cholesterol levels is an effective therapeutic strategy, not all patients at risk for disease respond to existing drugs. The proposed studies investigate new pathways and molecular mechanisms underlying the pathogenesis of atherosclerosis that could potentially be targeted for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL088093-10
Application #
9483741
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Kirby, Ruth
Project Start
2008-05-15
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Schneider, Dina A; Choi, Soo-Ho; Agatisa-Boyle, Colin et al. (2018) AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res 59:854-863
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Kobiyama, Kouji; Ley, Klaus (2018) Atherosclerosis. Circ Res 123:1118-1120
Woller, Sarah A; Choi, Soo-Ho; An, Eun Jung et al. (2018) Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 23:2667-2677
Jeong, Se-Jin; Kim, Sinai; Park, Jong-Gil et al. (2018) Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy 14:120-133
Choi, Soo-Ho; Wallace, Aaron M; Schneider, Dina A et al. (2018) AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight 3:
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Wei, Zong; Yoshihara, Eiji; He, Nanhai et al. (2018) Vitamin D Switches BAF Complexes to Protect ? Cells. Cell 173:1135-1149.e15
Tsimikas, Sotirios; Fazio, Sergio; Ferdinand, Keith C et al. (2018) NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J Am Coll Cardiol 71:177-192

Showing the most recent 10 out of 172 publications