Neutrophil transfusion has been commonly utilized as a therapeutic approach for the treatment of life-threatening bacterial and fungal infections in severe neutropenic patients. However, its clinical outcome is often hampered by short ex vivo shelf life and rapid in vivo death, inefficiency of recruitment to sites of inflammation, and poor pathogen killing capability of transplanted neutrophils. The ultimate goal of the proposed research is to identify and characterize cellular and molecular events that can improve neutrophil performance during transfusion. We are particularly interested in a signal pathway mediated by inositol phospholipid Ptdlns(3,4,5)P3. Recently, we have shown that the responsiveness of neutrophil to chemoattractant stimulation is much enhanced in PTEN knockout mice in which the Ptdlns(3,4,5)P3 signaling is hyperactivated. The recruitment of neutrophils to the inflamed peritoneal cavity was significantly elevated in these mice. In addition, augmenting Ptdlns(3,4,5)P3 signal via depleting PTEN prevents neutrophil spontaneous death. Moreover, we recently reported that neutrophil functions, such as chemotaxis, oxidative burst, recruitment to the sites of inflammation, were also augmented in lnsP3KB-/- neutrophils, in which the Ptdlns(3,4,5)P3 signal is elevated due to the depletion of lns(1,3,4,5)P4, an intracellular inhibitory modulator of Ptdlns(3,4,5)P3 signaling. These intriguing results led us to hypothesize that the efficacy of neutrophil transfusion can be improved by augmenting Ptdlns(3,4,5)P3 signaling in neutrophils. In this proposed study, we will use a mouse neutrophil transfusion model to test this hypothesis. First, we will investigate whether augmenting Ptdlns(3,4,5)P3 signaling can enhance the survival of transfused neutrophils (Aim l-Experiment A and B). In addition, we will examine whether the recruitment of transfused neutrophils to the sites of inflammation is enhanced by elevating Ptdlns(3,4,5)P3 signaling (Aim I- Experiment C and D). Finally, since the performance of transfused neutrophils is eventually reflected by the recipients'capability of clearing invading pathogens, we will determine whether augmenting Ptdlns(3,4,5)P3 signaling in transfused neutrophils can ultimately enhance the inflammatory response and bacteria killing capability of the recipient mice (Aim II). Experiments proposed in this study will provide insight into the mechanism of action of Ptdlns(3,4,5)P3 pathway in elevating the function of transfused neutrophils, with the ultimate goal of solidifying Ptdlns(3,4,5)P3 and related pathways as novel therapeutic targets for improving the performance of neutrophils in neutrophil transfusion. The ultimate goal of this research is in accordance with the general theme of current PPG which is """"""""to understand how transfused blood cells function at a molecular level"""""""".

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095489-05
Application #
8694073
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Liu, Bee Hui; Jobichen, Chacko; Chia, C S Brian et al. (2018) Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl Acad Sci U S A 115:E7119-E7128
Karatepe, Kutay; Zhu, Haiyan; Zhang, Xiaoyu et al. (2018) Proteinase 3 Limits the Number of Hematopoietic Stem and Progenitor Cells in Murine Bone Marrow. Stem Cell Reports 11:1092-1105
Liu, Ning-Ning; Uppuluri, Priya; Broggi, Achille et al. (2018) Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 14:e1007076
Kanneganti, Apurva; Malireddi, R K Subbarao; Saavedra, Pedro H V et al. (2018) GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med 215:1519-1529
Kambara, Hiroto; Liu, Fei; Zhang, Xiaoyu et al. (2018) Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep 22:2924-2936
Hou, Qingming; Liu, Fei; Chakraborty, Anutosh et al. (2018) Inhibition of IP6K1 suppresses neutrophil-mediated pulmonary damage in bacterial pneumonia. Sci Transl Med 10:
Zhang, Xue; Liu, Peng; Zhang, Christie et al. (2017) Positive Regulation of Interleukin-1? Bioactivity by Physiological ROS-Mediated Cysteine S-Glutathionylation. Cell Rep 20:224-235
Liu, Shutong; de Castro, Luis F; Jin, Ping et al. (2017) Manufacturing Differences Affect Human Bone Marrow Stromal Cell Characteristics and Function: Comparison of Production Methods and Products from Multiple Centers. Sci Rep 7:46731
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng et al. (2017) Reactive Oxygen Species-Producing Myeloid Cells Act as a Bone Marrow Niche for Sterile Inflammation-Induced Reactive Granulopoiesis. J Immunol 198:2854-2864
Teng, Yan; Luo, Hongbo R; Kambara, Hiroto (2017) Heterogeneity of neutrophil spontaneous death. Am J Hematol 92:E156-E159

Showing the most recent 10 out of 46 publications