Core B: Pre Clinical Animal Models of PAH The overall goals of the Pre-clinical Core are to provide expertise and novel assessments of pulmonary hypertension and right ventricular function in animal models that support TPPG projects and investigators. The Core will be directed by Dr. Karen Norris, who will lead the development of the non-human primate model of PAH and evaluation of candidate molecules developed in Projects 2 and 3. Dr. Hunter Champion will lead studies involving assessment of PAH in established rodent models utilized in Projects all Projects. The development of a novel, non-human primate model of PH, coupled with the extensive expertise in established mouse and rat models will provide a comprehensive evaluation of mechanistic pathways associated with disease progression. In addition, these models will be utilized by all Projects to evaluate genetic and environmental differences, as well as the effect of candidate small molecules on the progression of PH. Goals of the Core will be accomplished through the following SPECIFIC AIMS:
Aim 1 will provide expertise and novel assessments of pulmonary hypertension and right ventricular function in mouse and rat models of pulmonary hypertension. Model assessments include micro-right heart catheterization, miliar assessments of right ventricular pressure and volume loops, Fulton-index, and exercise capacity. Validated available models include the hypoxia-exposed mouse, the VEGF inhibition mouse model, the monocrotyline exposed rat and mouse, the pulmonary artery banded mouse, and the smoked emphysema mouse with pulmonary hypertension.
In Aim 2 we will further develop and characterize a primate model of pulmonary hypertension secondary to humanized simian immunodeficiency virus infection. The model will be characterized with CT-angiograms, PET/CT, right heart catheterization with assessments of pulmonary artery stiffness and RV pressure-volume function, RV and pulmonary pathology, and molecular characterization of pulmonary vasculature and RV by gene expression analysis. These studies will establish a non-human primate model of HIV- PAH and identify important correlates of disease progression.
Aim 3 will provide a primate model in years 3-10 for pre-clinical trials of candidate small molecule drugs arising from Projects 2 and 3, that require additional safety evaluations prior to phase l-lb human clinical trials

Public Health Relevance

The Pre-clinical Core will provide comprehensive expertise and novel assessments of PAH in pre-clinical models. Additionally, these studies will advance the field with the development and characterization of a novel, non-human primate model of PAH. This new model will complement the advanced physiological and molecular characterization of our existing rodent models and will provide a much needed intermediate step between drug development and clinical application

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Remy, Kenneth E; Cort├ęs-Puch, Irene; Solomon, Steven B et al. (2018) Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight 3:
Rom, Oren; Khoo, Nicholas K H; Chen, Y Eugene et al. (2018) Inflammatory signaling and metabolic regulation by nitro-fatty acids. Nitric Oxide :
D'Amore, Antonio; Fazzari, Marco; Jiang, Hong-Bin et al. (2018) Nitro-Oleic Acid (NO2-OA) Release Enhances Regional Angiogenesis in a Rat Abdominal Wall Defect Model. Tissue Eng Part A 24:889-904
Schopfer, Francisco J; Vitturi, Dario A; Jorkasky, Diane K et al. (2018) Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide 79:31-37
Farkas, Daniela; Thompson, A A Roger; Bhagwani, Aneel R et al. (2018) Toll-like Receptor 3 is a Therapeutic Target for Pulmonary Hypertension. Am J Respir Crit Care Med :
Goncharov, Dmitry A; Goncharova, Elena A; Tofovic, Stevan P et al. (2018) Metformin Therapy for Pulmonary Hypertension Associated with Heart Failure with Preserved Ejection Fraction versus Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 198:681-684
Rafikova, Olga; Williams, Elissa R; McBride, Matthew L et al. (2018) Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension. Am J Respir Cell Mol Biol 59:334-345
Hensley, Matthew K; Levine, Andrea; Gladwin, Mark T et al. (2018) Emerging therapeutics in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 314:L769-L781
Potoka, Karin P; Wood, Katherine C; Baust, Jeffrey J et al. (2018) Nitric Oxide-Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease. Am J Respir Cell Mol Biol 58:636-647
Simon, Marc A; Schnatz, Rick G; Romeo, Jared D et al. (2018) Bedside Ultrasound Assessment of Jugular Venous Compliance as a Potential Point-of-Care Method to Predict Acute Decompensated Heart Failure 30-Day Readmission. J Am Heart Assoc 7:e008184

Showing the most recent 10 out of 182 publications