Through our strong mentoring plan, excellent facility development, and outstanding external advisory panel review, we have achieved remarkable success during the Phase I funding of the only bioengineering COBRE in the nation. Begun with only four projects, our program has expanded to support and mentor 13 junior faculty who have collectively received >$10M in external funding, and published 151 journal articles. Five have also received independent status. Through this COBRE funding, we have recruited three junior and two senior BioE faculty. Clemson has provided cost-share support for pilot projects and a significant expansion of core facilities, most notably a new bioengineering innovation campus (CUBEInC, $16M) with the Greenville Hospital System. CUBEInC, with 29,000 sq. ft. of laboratory and networking space for investigators and clinicians, a surgical skills facility, and a conference center, will serve as the new site for our Phase II COBRE initiative. A new bioengineering building was also opened on the MUSC campus in Charleston in 2012. This new $60M facility represents the growing statewide emphasis on bioengineering and regenerative medicine and houses the labs of five full time Clemson tenure track faculty, one of whom is the target PI in this renewal application. Through Phase I COBRE funding, the Clemson Light Imaging Facility (CLIF) is now in the new Life Sciences building on the Clemson campus under the direction of Dr. Terri Bruce, our core director. We will build on these successes in Phase II. We will expand upon biomaterials-based approach in our tissue engineering studies to a more fundamental analysis of tissue regeneration and formation through our South Carolina Bioengineering Center of Regeneration and Formation of Tissues (SC BioCRAFT). We have selected five new outstanding investigators (3 hired during COBRE Phase I) and provided startup funds to develop their research in Phase II. We have also consolidated and added new areas of core expertise. We propose a unique Bioengineering and Bioimaging (B5) Core and Cell, Tissue, and Molecular Analysis (CTMA) core facilities to support junior faculty in the state. This proposal describes our plan to build an effective scientific collaboration to sustain the SC BioCRAFT beyond P20 funding while strengthening the bioengineering and tissue regeneration scientific community in our state and nationally.
Our specific aims are to 1) expand the critical mass of funded investigators affiliated with the COBRE through mentoring in research career development of five additional outstanding targeted investigators with interests and talents relevant to our theme;2) enhance our core to help our targeted faculty compete successfully for NIH funding and forge collaborations with investigators statewide, including COBRE graduates and non-COBRE researchers with relevant interests and;3) Promote formal recognition of SC BioCRAFT as a designated, sustainable University recognized research center to support the transition from COBRE to long-term competitive support from diverse federal and non-federal sources.

Public Health Relevance

The overarching theme of the Bioengineering Center of Regeneration and Formation of Tissues (SC BioCRAFT) is tissue regeneration, which is highly relevant to NIH's mission of applying fundamental knowledge about the nature and behavior of living systems to enhance health, lengthen life, and reduce illness and disability. As the nation's only bioengineering COBRE center, we are currently supporting projects and cores to find novel methods to restore or regenerate diseased neural, cardiovascular, and bone tissues.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103444-06
Application #
8742729
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Canto, Maria Teresa
Project Start
2009-09-30
Project End
2019-04-30
Budget Start
2014-07-01
Budget End
2015-04-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Clemson University
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
City
Clemson
State
SC
Country
United States
Zip Code
29634
Hensley, Austin; Rames, Jess; Casler, Victor et al. (2018) Decellularization and characterization of a whole intervertebral disk xenograft scaffold. J Biomed Mater Res A 106:2412-2423
Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa et al. (2018) Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions. Biochem Biophys Res Commun 499:24-29
Prim, David A; Menon, Vinal; Hasanian, Shahd et al. (2018) Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial Arteries, and Saphenous Veins. J Vasc Res 55:255-267
Kourtidis, Antonis; Anastasiadis, Panos Z (2018) Close encounters of the RNAi kind: the silencing life of the adherens junctions. Curr Opin Cell Biol 54:30-36
Dunton, Cody L; Purves, J Todd; Hughes Jr, Francis M et al. (2018) Elevated hydrostatic pressure stimulates ATP release which mediates activation of the NLRP3 inflammasome via P2X4 in rat urothelial cells. Int Urol Nephrol 50:1607-1617
Yu, Jin; Zhu, Hong; Taheri, Saeid et al. (2018) Impact of nutrition on inflammation, tauopathy, and behavioral outcomes from chronic traumatic encephalopathy. J Neuroinflammation 15:277
Dhulekar, Jhilmil; Simionescu, Agneta (2018) Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 70:25-34
Bae, Sooneon; DiBalsi, Michael J; Meilinger, Nicole et al. (2018) Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS Appl Mater Interfaces 10:8426-8435
Le Tourneau, Thierry; Le Scouarnec, Solena; Cueff, Caroline et al. (2018) New insights into mitral valve dystrophy: a Filamin-A genotype-phenotype and outcome study. Eur Heart J 39:1269-1277
McGuire, Rachel; Borem, Ryan; Mercuri, Jeremy (2017) The fabrication and characterization of a multi-laminate, angle-ply collagen patch for annulus fibrosus repair. J Tissue Eng Regen Med 11:3488-3493

Showing the most recent 10 out of 127 publications