Schizophrenia (SZ) and bipolar disorder (BP) are two of the most challenging and costliest mental disorders in terms of human suffering and societal expenditure. Clinically, SZ and BP can present with similar symptomology during acute psychotic periods, raising issues of differential diagnosis, frontline medication regime, and treatment planning. Currently there are no definitive biological markers for either diseases, and their diagnosis relies upon longitudinal symptom assessment. Several studies have been published which compared SZ and BP within a single modality such as fMRI, sMRI, EEG, and DTI, and have identified brain alterations that discriminate the two conditions. However, this work has been hampered by small sample sizes, limited re-test reliability and general replicability. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover the hidden factors that can unify disparate findings. Here we seek to replicate and extend the search for biomarkers to reliably differentiate SZ from BP by using N-way multimodal fusion, e.g., fMRI, DTI, and sMRI data, which is expected to improve the group-differentiating ability beyond any single modality. We will develop a novel multivariate model and release a user-friendly toolbox, which enables people to combine multiple modalities freely, explore the joint information accurately and examine the relationship between brain patterns and clinical measures smartly, such as symptom scores etc. Another aim of this proposal is to study the trait versus state effect of SZ and BP, using longitudinal data and in a 3-way fMRI-DTI-sMRI fusion. We will access data from patients who were scanned immediately after discharge and again 5-7 weeks later. This time period is when clinicians have the most difficulties in distinguishing SZ from BP. Such a valuable dataset along with the use of a cutting-edge joint analysis model, will enable us to investigate multiple group-discriminating factors and the traits which may serve as potential biomarkers of SZ or BP. In addition, the modalities (and their combinations) will be ranked according to their ability to distinguish groups, resulting in a modal selection preference. We will further evaluate whether there are natural clusters in multimodal data that provide evidence compatible the clinical diagnoses and attempt to classify patients at the level of individual psychiatric patients based on the selected group-discriminative features and novel classification algorithms. We believe the group-differentiating information retrieved from 3 modalities will enhance the sensitivity and specificity of the classification and permit more reliable and valid biomarkers to be identified by fusing similar data types from other sites. The successful completion of this project will provide a powerful tool for N-way multimodal data fusion, help characterize the traits of SZ and BP which may serve as potential biomarkers and expedite their differential diagnosis in acute settings, leading to more appropriate treatment and improved outcomes for both patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103472-10
Application #
9276018
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
2019-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
The Mind Research Network
Department
Type
DUNS #
098640696
City
Albuquerque
State
NM
Country
United States
Zip Code
87106
Rashid, Barnaly; Blanken, Laura M E; Muetzel, Ryan L et al. (2018) Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder. Hum Brain Mapp 39:3127-3142
Agcaoglu, O; Miller, R; Damaraju, E et al. (2018) Decreased hemispheric connectivity and decreased intra- and inter- hemisphere asymmetry of resting state functional network connectivity in schizophrenia. Brain Imaging Behav 12:615-630
Osuch, E; Gao, S; Wammes, M et al. (2018) Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients. Acta Psychiatr Scand 138:472-482
Allen, E A; Damaraju, E; Eichele, T et al. (2018) EEG Signatures of Dynamic Functional Network Connectivity States. Brain Topogr 31:101-116
Liu, Jingyu; Chen, Jiayu; Perrone-Bizzozero, Nora et al. (2018) A Perspective of the Cross-Tissue Interplay of Genetics, Epigenetics, and Transcriptomics, and Their Relation to Brain Based Phenotypes in Schizophrenia. Front Genet 9:343
Bridwell, David A; Rachakonda, Srinivas; Silva, Rogers F et al. (2018) Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data. Brain Topogr 31:47-61
Fu, Zening; Tu, Yiheng; Di, Xin et al. (2018) Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. Neuroimage :
Mennigen, Eva; Miller, Robyn L; Rashid, Barnaly et al. (2018) Reduced higher-dimensional resting state fMRI dynamism in clinical high-risk individuals for schizophrenia identified by meta-state analysis. Schizophr Res 201:217-223
Fang, Jian; Xu, Chao; Zille, Pascal et al. (2018) Fast and Accurate Detection of Complex Imaging Genetics Associations Based on Greedy Projected Distance Correlation. IEEE Trans Med Imaging 37:860-870
Hjelm, R Devon; Damaraju, Eswar; Cho, Kyunghyun et al. (2018) Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks. Front Neurosci 12:600

Showing the most recent 10 out of 222 publications