Burkholderia pseudomallei causes melioidosis infections and is currently the third leading cause of death in Northeast Thailand. Melioidosis is particularly difficult to treat due to intrinsic resistance to antibiotics. Despite the prevalence of melioidosis there is currently a limited understanding of B. pseudomallei pathogenesis. This research program is focused on a virulence regulator in B. pseudomallei, BpsR4. BpsR4 is a member of the LuxR family of transcriptional regulators that are involved in a type of bacterial communication called quorum sensing. Typically LuxR proteins induce target gene expression in response to acyl-homoserine lactone (AHL) quorum-sensing signals. However, BpsR4 induces transcription of virulence genes in a manner that is AHL-independent. Interestingly, BpsR4 is activated by antibiotics (trimeothoprim and piperacillin) that regulate BpsR4 at the transcriptional level. To our knowledge BpsR4 is the first conserved LuxR-family protein that is AHL-independent, and the role of antibiotics in activating BpsR4 or other LuxR-family proteins is totally unknown. Although BpsR4 is important for virulence in a C. elegans model host, it is also unknown if BpsR4 induces virulence gene transcription during host infections. Our long-term goal is to understand how LuxR-family proteins promote bacterial survival in different environments, including the host. The objective of this application is to determine how antibiotics induce BpsR4 transcription and the importance of BpsR4 in regulating virulence gene expression in the host. Our central hypothesis is that antibiotics activate BpsR4 through unknown antibiotic-responsive transcriptional regulator(s) and that BpsR4 induces virulence gene expression during C. elegans infection. This proposal aims to i) identify antibiotic-responsive BpsR4 regulators and ii) evaluate BpsR4 induction of virulence genes during host infections. Because BpsR4 is a new class of LuxR-family proteins the studies proposed are expected to expand the current view of the LuxR family. The proposed experiments will also provide us with experimental data critical for building a picture of how antibiotics regulate BpsR4 expression and how BpsR4 promotes virulence during infection. This is significant because the results are expected to increase the currently limited understanding of how B. pseudomallei causes disease, and may ultimately lead to new strategies to control and treat melioidosis.

Public Health Relevance

Infections caused by the bacterium Burkholderia pseudomallei are difficult to treat, often fatal and increasing in incidence. The focus of this research is a quorum-sensing regulator that promotes B. pseudomallei virulence by a previously unknown mechanism. The results of the proposed studies will increase understanding of B. pseudomallei disease mechanisms and expand our current view of quorum sensing. This may facilitate the development of new therapeutics or strategies to prevent or treat melioidosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-04
Application #
8883613
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
2015-07-01
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
4
Fiscal Year
2015
Total Cost
$180,462
Indirect Cost
$60,154
Name
University of Kansas Lawrence
Department
Type
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Zhu, Qingfu; Heon, Mikala; Zhao, Zheng et al. (2018) Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip 18:1690-1703
Pacelli, Settimio; Basu, Sayantani; Berkland, Cory et al. (2018) Design of a cytocompatible hydrogel coating to modulate properties of ceramic-based scaffolds for bone repair. Cell Mol Bioeng 11:211-217
Wessinger, Carolyn A; Kelly, John K; Jiang, Peng et al. (2018) SNP-skimming: A fast approach to map loci generating quantitative variation in natural populations. Mol Ecol Resour 18:1402-1414
Zhang, Peng; Crow, Jennifer; Lella, Divya et al. (2018) Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip. Lab Chip 18:3790-3801
Klaus, Jennifer R; Deay, Jacqueline; Neuenswander, Benjamin et al. (2018) Malleilactone Is a Burkholderia pseudomallei Virulence Factor Regulated by Antibiotics and Quorum Sensing. J Bacteriol 200:
Abisado, Rhea G; Benomar, Saida; Klaus, Jennifer R et al. (2018) Bacterial Quorum Sensing and Microbial Community Interactions. MBio 9:
Hill, Tom; Unckless, Robert L (2018) The dynamic evolution of Drosophila innubila Nudivirus. Infect Genet Evol 57:151-157
Bandyopadhyay, Arnab; Wang, Huijing; Ray, J Christian J (2018) Lineage space and the propensity of bacterial cells to undergo growth transitions. PLoS Comput Biol 14:e1006380
Kaplan, Sam V; Limbocker, Ryan A; Levant, Beth et al. (2018) Regional differences in dopamine release in the R6/2 mouse caudate putamen. Electroanalysis 30:1066-1072
Reiner, David J; Lundquist, Erik A (2018) Small GTPases. WormBook 2018:1-65

Showing the most recent 10 out of 134 publications