Regulation and Function of Extended 3 UTR Transcripts in the Nervous System More than 50% of genes in diverse organisms undergo Alternative Cleavage and PolyAdenylation (APA) to generate multiple 3 UTR mRNA isoforms. Thousands of novel extended 3 UTRs have been recently identified to be preferentially expressed in the nervous system of fly, mouse and human. Such a pervasive and cell-specific event is likely to have wide-ranging physiologically relevant consequences for nervous system development, maintenance and disease. However, to date, few functional roles for extended 3 UTRs have been identified. The long-term objectives are to uncover functions for these extended 3 UTR isoforms in the nervous system, and elucidate the mechanisms of their biogenesis and biological activity. The focus is on a set of genes that play established roles in axon guidance. More than ten genes with roles in axon guidance express short and extended 3 UTR isoforms, suggesting that APA is an important regulator for this key neurodevelopmental event. Some of these genes have direct relevance to human disease. For instance, mutations in calmodulin genes are implicated in multiple cardiac defects in humans. To investigate extended 3 UTR function, CRISPR genome editing is employed to specifically delete these isoforms in Drosophila. This approach has been established, and preliminary work has uncovered that impairment of an extended 3 UTR isoform, while leaving the short 3 UTR isoforms intact, can impair nervous system development.
In Aim 1, this approach is expanded to cam, the Drosophila calmodulin gene.
In Aim 2, the role that chromatin modifications have on the biogenesis of extended 3 UTRs is investigated. This builds upon ongoing work on the mechanism through which the ELAV regulates 3 UTR extension. Overall, this work will establish APA as a crucial mechanism governing multiple genes that control axon guidance.

Public Health Relevance

Regulation and Function of Extended 3 UTR Transcripts in the Nervous System The proposed research attempts to uncover functions for a newly discovered set of alternative transcript isoforms in the development of the nervous system. The research has implications for the understanding and treatment of human genetic disorders characterized by impaired axon guidance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103650-09
Application #
9984410
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2020-06-02
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Nevada Reno
Department
Type
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Gwinn, O Scott; Matera, Courtney N; O'Neil, Sean F et al. (2018) Asymmetric neural responses for facial expressions and anti-expressions. Neuropsychologia 119:405-416
Knupp, David; Miura, Pedro (2018) CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev 173:71-79
Zaeimian, Masoumeh Saber; Gallian, Brandon; Harrison, Clay et al. (2018) Mn Doped AZIS/ZnS Nanocrystals (NCs): Effects of Ag and Mn Levels on NC Optical Properties. J Alloys Compd 765:236-244
Xue, Yongbo; Zhang, Yong (2018) Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 19:1
Du, Juan; Zhang, Yifan; Xue, Yongbo et al. (2018) Diurnal protein oscillation profiles in Drosophila head. FEBS Lett 592:3736-3749
Retter, Talia L; Jiang, Fang; Webster, Michael A et al. (2018) Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization. Vision Res 145:11-20
Myers, Logan; Perera, Hiran; Alvarado, Michael G et al. (2018) The Drosophila Ret gene functions in the stomatogastric nervous system with the Maverick TGF? ligand and the Gfrl co-receptor. Development 145:
Harrison, Matthew T; Strother, Lars (2018) Visual recognition of mirrored letters and the right hemisphere advantage for mirror-invariant object recognition. Psychon Bull Rev 25:1494-1499
Singh, Mahendra; Miura, Pedro; Renden, Robert (2018) Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 67:108-119
Cortés-López, Mariela; Gruner, Matthew R; Cooper, Daphne A et al. (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8

Showing the most recent 10 out of 94 publications