Cardiac fibrosis is an integral feature of structural remodeling that occurs in response to a variety of cardiopulmonary diseases and can be a consequence of endothelial injury. It can impair ventricular function, increase the risk for arrhythmias and contribute to heart failure development. Cardiac fibroblasts are important therapeutic targets because they become activated in response to stress and play a key role in fibrosis development. Efforts to develop therapies that specifically target fibroblasts are still at an early stage. Compared to traditional drug targets, microRNAs (miRNAs) offer novel mechanistic possibilities. So far, little is known about their role in cardiac fibroblasts. I have determined the miRNA expression pattern in adult rat ventricular fibroblasts and their dynamic regulation during fibroblast activation in vitro. MiRNA-1, a muscle-enriched miRNA that has so far been extensively studied in myocytes, is shown to be expressed in cardiac fibroblasts and markedly down-regulated upon activation. My preliminary data also show miRNA-ldependent negative regulation of fibroblast proliferation, transformation and protein expression of several predicted miRNA-1 targets that are involved in cell cycle regulation and fibrosis development. The long-term goal of my research is to gain a better understanding of the functional role and mechanisms of action of miRNAs in cardiac fibroblasts under physiological and pathophysiological conditions.
The Specific Aims are: i) To identify miRNAs that are changed in their expression upon fibroblast activation in vitro and in vivo and to select candidate miRNAs for further investigation based on their expression profile and target predictions; 2) To delineate functional effects and mechanisms of action of miRNA-1 and other miRNAs in adult cardiac fibroblasts using gain- and loss-of-function approaches; 3) To determine the effects of fibroblast-restricted miRNA manipulation on prevention and/or reversal of cardiac fibrosis development in vivo. This project will provide novel and comprehensive insights into miRNAs in cardiac fibroblasts. The findings will provide a platform for future grant applications that will aim to fully delineate the effects of fibroblast-restricted miRNA manipulation in vivo, which may provide new therapeutic strategies.

Public Health Relevance

Cardiac fibroblasts are important therapeutic targets for cardiac fibrosis. miRNAs, which are recently discovered small regulatory molecules, play a critical role in the heart. The proposed project will advance our understanding of the functional role and mechanisms of action of miRNAs in cardiac fibroblasts and fibrosis development that may open novel mechanistic concepts for treatment and prevention of cardiac fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103652-05
Application #
9298676
Study Section
Special Emphasis Panel (ZGM1-TWD-B)
Project Start
Project End
2018-07-19
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
5
Fiscal Year
2017
Total Cost
$254,586
Indirect Cost
Name
Ocean State Research Institute, Inc.
Department
Type
Research Institutes
DUNS #
848476271
City
Providence
State
RI
Country
United States
Zip Code
02908
Liu, Yuhong; Cole, Victoria; Lawandy, Isabella et al. (2018) Decreased coronary arteriolar response to KCa channel opener after cardioplegic arrest in diabetic patients. Mol Cell Biochem 445:187-194
Chorzalska, Anna; Ahsan, Nagib; Rao, R Shyama Prasad et al. (2018) Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-?B pathways in a model of chronic myeloid leukemia. Mol Oncol 12:630-647
Abbasi, Adeel; Devers, Cynthia; Muratore, Christopher S et al. (2018) Examining the role of extracorporeal membrane oxygenation in patients following suspected or confirmed suicide attempts: A case series. J Crit Care 44:445-449
Lu, Qing; Gottlieb, Eric; Rounds, Sharon (2018) Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 314:L743-L756
Dennery, Phyllis A; Carr, Jennifer; Peterson, Abigail et al. (2018) THE ROLE OF MITOCHONDRIAL FATTY ACID USE IN NEONATAL LUNG INJURY AND REPAIR. Trans Am Clin Climatol Assoc 129:195-201
Banerjee, Debasree; Monaghan, Sean; Zhao, Runping et al. (2018) Soluble programmed cell death protein-1 and programmed cell death ligand-1 in sepsis. Crit Care 22:146
Harrington, Elizabeth O; Vang, Alexander; Braza, Julie et al. (2018) Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 314:L165-L176
Awad, Maan A; Aldosari, Sarah R; Abid, M Ruhul (2018) Genetic Alterations in Oxidant and Anti-Oxidant Enzymes in the Vascular System. Front Cardiovasc Med 5:107
Baird, Grayson L; Archer-Chicko, Christine; Barr, R Graham et al. (2018) Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur Respir J 51:
Shah, Nishant R; Blankstein, Ron; Villines, Todd et al. (2018) Coronary CTA for Surveillance of Cardiac Allograft Vasculopathy. Curr Cardiovasc Imaging Rep 11:26

Showing the most recent 10 out of 96 publications