The lack of scar-free healing and regeneration in humans imposes severe limitations on functional recovery after major traumatic injury, surgical interventions and disease. Default wound-repair in most adult human tissues initiates the formation of a protein/carbohydrate fibrotic network that progressively matures into dysfunctional scar tissue. In organs like the heart, lung and liver, formation of scar tissue can be deadly and contributes to ~45% of all U.S. deaths. Development of therapies that activate regeneration and scar-free repair programs in humans will transform modern healthcare. In contrast to humans and most other mammals, salamanders are capable of scar-free regeneration of almost all complex tissues including the limbs, heart, brain and spinal cord. Using the salamander as a model system, we recently demonstrated for the first time the critical role of the innate immune system in regulating scar-free regeneration. Specifically, we showed 1) that early infiltration of macrophages into damaged limb or heart tissue actively suppresses fibrosis and 2) that suppression of fibrosis is an essential step required for normal regeneration to occur. The cellular and molecular mechanisms by which macrophages suppress fibrosis after injury are completely unknown. The overarching goal of this proposal is to begin defining these mechanisms for the first time using salamander limb regeneration as a model system. Development of therapies that suppress fibrosis by modulating macrophage function may allow scar-free repair and regeneration of damaged tissues in humans. Our proposal will be the first to define how salamander macrophages suppress myofibroblast induction and scar tissue formation. We will use lineage tracing methods to identify the source of scar producing cells, which are the cellular targets of anti-fibrotic macrophage signaling. We will then define the macrophage subtypes that inhibit myofibroblast induction and fibrotic activation signals. Using RNA-sequencing, we will characterize gene expression patterns in macrophages that suppress myofibroblast induction. These studies will provide the first mechanistic insights into anti-fibrotic signaling pathways that allow macrophages to support scar-free healing. Finally, we will test the hypothesis that permanent scar tissue formation may be reversible by inhibition of lysyl oxidase, an enzyme that mediates crosslinking of the extracellular matrix, which, in turn, prevents scar-free healing and regeneration. This proposal is both significant and innovative as it will address a critical gap in our understanding of how fibrosis and scarring is overcome in a highly regenerative animal model. These new insights will form an essential step in the development of anti-fibrosis and pro-regenerative therapies for patients. !

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM104318-07
Application #
9723137
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
7
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Mount Desert Island Biological Lab
Department
Type
DUNS #
077470003
City
Salsbury Cove
State
ME
Country
United States
Zip Code
04672
Lee, Bum-Kyu; Uprety, Nadima; Jang, Yu Jin et al. (2018) Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells. Stem Cell Res 26:95-102
Hampton, Thomas H; Jackson, Craig; Jung, Dawoon et al. (2018) Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. Environ Sci Technol 52:8811-8821
Yin, Viravuth P (2018) In Situ Detection of MicroRNA Expression with RNAscope Probes. Methods Mol Biol 1649:197-208
King, Benjamin L; Rosenstein, Michael C; Smith, Ashley M et al. (2018) RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regen Med 3:10
Lavine, Kory J; Pinto, Alexander R; Epelman, Slava et al. (2018) The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 72:2213-2230
Yamada, Toshiki; Strange, Kevin (2018) Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function. J Gen Physiol 150:1003-1015
Waldron, Ashley L; Schroder, Patricia A; Bourgon, Kelly L et al. (2018) Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J Diabetes Complications 32:249-257
Beck, Samuel; Rhee, Catherine; Song, Jawon et al. (2018) Implications of CpG islands on chromosomal architectures and modes of global gene regulation. Nucleic Acids Res 46:4382-4391
Smith, Ashley M; Maguire-Nguyen, Katie K; Rando, Thomas A et al. (2017) The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues. NPJ Regen Med 2:4
Godwin, J W; Debuque, R; Salimova, E et al. (2017) Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2:

Showing the most recent 10 out of 76 publications