This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Spinal cord injury (SCI) and subsequent secondary cell death partially involves an ischemic component. Oligodendrocytes and astrocytes survival is critical to maintain cellular interactions in the white matter and limit secondary injury damage. The purpose of this proposal is to study heat shock proteins (hsps) induction and interactions in hypoxia/ischemia-exposed oligodendrocytes and astrocytes and identify molecules and signaling pathways associated with higher tolerance to ischemia. Hsps induced by various stresses are involved in protein refolding and repair, and have been implicated in cellular ischemic tolerance in brain and in spinal cord. We will test the hypothesis that after SCI, induction of hsp expression modulates glial cell survival signaling pathways to preserve oligodendrocyte / astrocyte integrity and interactions with neurons.
The specific aims of this proposal are: 1. To examine the expression profile of heat shock proteins induced in hypoxic/ischemic oligodendrocytes and astrocytes in culture, and in contused spinal cord. 2. To determine the effect of hsp on oligodendrocytes and astrocytes survival to hypoxia/ ischemic injury and after SCI. 3. To determine the mechanism(s) of hsp-related cell protection and the role of hsp binding proteins in hypoxia/ ischemia survival pathways and in cell death after SCI. Using embryonic oligodendrocyte precursors (OPCs) differentiated to either oligodendrocytes or astrocytes and exposed to hypoxia/ischemia, we will assess heat shock proteins expression in a cellular model and correlate the levels of hsp expression with cell survival. In addition, we will characterize the profile of hsps induced by SCI in rodent spinal cord. The effect of hsp gene overexpression or silencing on oligodendrocytes/astrocytes survival to cellular hypoxia/ ischemia and on SCI-induced delayed injury will be determined, as well as the effect of experimental hsp induction in the whole animal on secondary injury-induced damage after SCI. Finally, we will use proteomic approaches to identify protein-protein interactions with hsps induced by hypoxia/ischemia in oligodendro- cytes and in astrocytes, and in differentially damaged areas of the spinal cord after SCI. Thus, we will characterize signaling pathways underlying cellular differential sensitivity to hypoxia/ischemia and identify potential intervention targets in SCI. These studies will identify novel therapeutic approaches to preserve oligodendroglial support in injured spinal cord, inhibit apoptosis, and reduce delayed white matter injury.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015576-09
Application #
7720380
Study Section
Special Emphasis Panel (ZRR1-RI-8 (02))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
9
Fiscal Year
2008
Total Cost
$226,811
Indirect Cost
Name
University of Louisville
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Kuypers, Nicholas J; Bankston, Andrew N; Howard, Russell M et al. (2016) Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation. J Neurosci 36:1698-710
Myers, Scott A; Bankston, Andrew N; Burke, Darlene A et al. (2016) Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 283:560-72
Ward, P J; Herrity, A N; Harkema, S J et al. (2016) Training-Induced Functional Gains following SCI. Neural Plast 2016:4307694
May, Zacnicte; Fouad, Karim; Shum-Siu, Alice et al. (2015) Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behav Brain Res 291:26-35
Jagadapillai, Rekha; Mellen, Nicholas M; Sachleben Jr, Leroy R et al. (2014) Ceftriaxone preserves glutamate transporters and prevents intermittent hypoxia-induced vulnerability to brain excitotoxic injury. PLoS One 9:e100230
Nielson, Jessica L; Guandique, Cristian F; Liu, Aiwen W et al. (2014) Development of a database for translational spinal cord injury research. J Neurotrauma 31:1789-99
Ward, Patricia J; Herrity, April N; Smith, Rebecca R et al. (2014) Novel multi-system functional gains via task specific training in spinal cord injured male rats. J Neurotrauma 31:819-33
Kuypers, Nicholas J; James, Kurtis T; Enzmann, Gaby U et al. (2013) Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Exp Neurol 247:615-22
Schultz, R L; Kullman, E L; Waters, R P et al. (2013) Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats. Physiol Res 62:361-9
Burke, Darlene A; Whittemore, Scott R; Magnuson, David S K (2013) Consequences of common data analysis inaccuracies in CNS trauma injury basic research. J Neurotrauma 30:797-805

Showing the most recent 10 out of 150 publications