This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The identification of the sub-population of cancer stem cells (CSC), responsible for cancer progression and metastasis (cellular target) and the discovery of proteins or pathways relevant to the malignant phenotype (molecular target), are very important to tailor appropriate systemic therapies. Prominin-1 (CD133), a cell-surface glycoprotein, named for its prominent location on the protrusion of cell membranes, has the potential to identify the cellular target and to constitute a molecular target for some types of cancer. CD133 has now been recognized as the most important CSC-associated marker identified so far, with increased expression in the CSC fraction of a large variety of human malignancies. The physiological function(s) of CD133 are unknown, except in the eye, where it is involved in photoreceptor disk morphogenesis. We have previously found that CD133 knockdown slowed cell growth, decreased cell motility, and reduced the capacity of human melanoma cells to metastasize. These data, together with the recent report of in vivo antitumor efficacy of an anti-CD133-drug conjugate in hepatocellular and gastric cancers11, strongly suggest that (i) CD133 is an important potential target per se, and (ii) targeting CD133 has potential clinical utility against CD133-expressing tumors. We are currently pursuing the following aims in our laboratory: A. Discovery of CD133 protein interactors by the yeast """"""""two-hybrid"""""""" system. B. Discovery of additional (non-physical) interactions of CD133 with cellular genes and signaling pathways. C. To investigate the potential of anti-CD133 immunotoxins and of newly discovered CD133-interacting proteins or CD133-associated signaling pathways as targets for cancer therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016464-10
Application #
8360615
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$76,652
Indirect Cost
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Wang, Xia; Amei, Amei; de Belle, J Steven et al. (2018) Environmental effects on Drosophila brain development and learning. J Exp Biol 221:
Muñoz, Francisco V; Larkey, Linda (2018) THE CREATIVE PSYCHOSOCIAL GENOMIC HEALING EXPERIENCE (CPGHE) AND GENE EXPRESSION IN BREAST CANCER PATIENTS: A FEASIBILITY STUDY. Adv Integr Med 5:9-14
Lim, Sung Don; Yim, Won Choel; Liu, Degao et al. (2018) A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. Plant Biotechnol J :
Francis, Ashish; Kleban, Shawna R; Stephenson, Linda L et al. (2017) Hyperbaric Oxygen Inhibits Reperfusion-Induced Neutrophil Polarization and Adhesion Via Plasmin-Mediated VEGF Release. Plast Reconstr Surg Glob Open 5:e1497
Kim, Minkyung; Fontelonga, Tatiana M; Lee, Clare H et al. (2017) Motor axons are guided to exit points in the spinal cord by Slit and Netrin signals. Dev Biol 432:178-191
Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash et al. (2017) Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila. Ecol Evol 7:619-637
Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A et al. (2017) Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J Bacteriol 199:
Villegas-Negrete, Norberto; Robleto, Eduardo A; Obregón-Herrera, Armando et al. (2017) Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS One 12:e0179625
Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung et al. (2016) Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling. Neural Dev 11:18
Blumröder, R; Glunz, A; Dunkelberger, B S et al. (2016) Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. Genes Brain Behav 15:647-59

Showing the most recent 10 out of 291 publications