? This supplemental application requests funding for equipment to establish a Core Module in Functional Genomics, which has three interrelated components that will be used extensively by the PJIs and related research projects. The three components of the Functional Genomics Module are: 1) A facility that will be used to test gene function in genetically modified mice. We will create a state-of-the-art mouse genetics facility, which will mainly support the manipulation of the mouse genome by targeted mutagenesis in mouse embryonic stem cells. This facility will allow us to generate animal models of human diseases and pathology through precise genomic modifications in mouse embryonic stem cells. 2) An in vitro facility for reverse genetics using RNA interference in cell culture. RNAi, the introduction of sequence-specific double-stranded small inhibiting RNAs (siRNAs), has become a powerful tool to knock down gene expression in isolated cells, siRNAs can be introduced into retinal neurons grown in a chemically defined environment to study the function of numerous genes. The inhibition of the expression of endogenous and transfected genes using in vitro systems can be evaluated free from the homeostatic influence of the whole organism. 3) An in vivo facility for reverse genetics using RNA interference in animal models. The therapeutic potential of iRNA will be investigated by long-term expression of the siRNA molecules in the terminally differentiated cells of the intact retina. Funds are requested for equipment only; no funds are requested for A&R. Successful implementation of this Functional Genomics Module will shorten the time for submission of first-time R01 applications by our 5 COBRE-funded promising junior investigators, and expand the research horizons for 15 other vision researchers, module directors, and/or COBRE mentors on our campus. ? ?

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
3P20RR017703-02S1
Application #
6707272
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Program Officer
Sayre, Michael
Project Start
2002-09-16
Project End
2004-06-30
Budget Start
2003-09-01
Budget End
2004-06-30
Support Year
2
Fiscal Year
2003
Total Cost
$500,000
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Bhatti, Faizah; Kung, Johannes W; Vieira, Frederico (2018) Retinal degeneration mutation in Sftpa1tm1Kor/J and Sftpd -/- targeted mice. PLoS One 13:e0199824
Vieira, Frederico; Kung, Johannes W; Bhatti, Faizah (2017) Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat 211:184-201
Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena et al. (2016) Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress. J Neurochem 136:931-46
Stiles, Megan; Qi, Hui; Sun, Eleanor et al. (2016) Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 57:818-31
Bennett, Lea D; Anderson, Robert E (2016) Current Progress in Deciphering Importance of VLC-PUFA in the Retina. Adv Exp Med Biol 854:145-51
Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei et al. (2016) The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility. J Biol Chem 291:8721-34
Ma, Hongwei; Ding, Xi-Qin (2016) Thyroid Hormone Signaling and Cone Photoreceptor Viability. Adv Exp Med Biol 854:613-8
Cai, Xue; Chen, Lijuan; McGinnis, James F (2015) Correlation of ER stress and retinal degeneration in tubby mice. Exp Eye Res 140:130-138
Bhatti, Faizah; Ball, Genevieve; Hobbs, Ronald et al. (2015) Pulmonary surfactant protein a is expressed in mouse retina by Müller cells and impacts neovascularization in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 56:232-42
Rajala, Raju V S; Rajala, Ammaji; Morris, Andrew J et al. (2014) Phosphoinositides: minor lipids make a major impact on photoreceptor cell functions. Sci Rep 4:5463

Showing the most recent 10 out of 245 publications