This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The ongoing threat of the use of anthrax as a bioterrorism agent necessitates the development of therapies that block the action of anthrax toxin at any stage of infection. The objective of this research is to understand how pH governs the large conformational change in the protective antigen (PA) to form a membrane spanning pore, a requisite step to initiating the cytotoxicity associated with anthrax, which will guide the development of effective therapeutics directed against anthrax infection. The specific hypothesis is that formation of a pore in the presence of the receptor is critically dependent on the protonation of one or more specific histidine residues. Support for this hypothesis derives from results of preliminary experiments which show that the uniform biosynthetic incorporation of 2-fluorohistidine (2-FHis) (which has a dramatically lower side-chain pKa (pKa ~1)) into the heptamer of PA results in a multimeric protein structure that cannot undergo the pH dependent changes leading to a pore.
Our specific aims are to: 1. Determine the structural basis by which the receptor modulates pore formation. Based on preliminary results, we hypothesize that protonation of histidine residues specifically in the PA receptor binding domain (domain 4) causes a conformational change that results in a loss of binding to the receptor. We plan to isolate and characterize the structure of the receptor binding domain of PA using biophysical methods, including fluorescence, circular dichroism spectroscopy and NMR. 2. Identify specific regions within PA that undergo pH-dependent structural changes that result in pore formation. In addition to the known structural changes that occur in domain 2 of PA, structural changes are likely to occur throughout the protein that are required to facilitate the correct formation of a functional pore. How these structural changes are dependent upon pH will be determined using solution ([13C] and [19F]) and solid-state NMR.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR017708-09
Application #
8359660
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
9
Fiscal Year
2011
Total Cost
$261,051
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Garabedian, Alyssa; Baird, Matthew A; Porter, Jacob et al. (2018) Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 90:2918-2925
Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D et al. (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92-104
Pang, Xiao-Yan; Wang, Suya; Jurczak, Michael J et al. (2017) Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 633:93-102
McNiff, Michaela L; Chadwick, Jennifer S (2017) Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 30:467-475
Jeanne Dit Fouque, Kevin; Garabedian, Alyssa; Porter, Jacob et al. (2017) Fast and Effective Ion Mobility-Mass Spectrometry Separation of d-Amino-Acid-Containing Peptides. Anal Chem 89:11787-11794
McNiff, M L; Haynes, E P; Dixit, N et al. (2016) Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli. Protein Expr Purif 122:64-71
Johnson, Troy A; Mcleod, Matthew J; Holyoak, Todd (2016) Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 55:575-87
Tucker, Jenifer K; McNiff, Michaela L; Ulapane, Sasanka B et al. (2016) Mechanistic investigations of matrix metalloproteinase-8 inhibition by metal abstraction peptide. Biointerphases 11:021006
Yadav, Rahul; Vattepu, Ravi; Beck, Moriah R (2016) Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 428:4031-4047
Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G et al. (2016) Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 473:383-96

Showing the most recent 10 out of 256 publications