This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Conversion of green-fluorescent protein (GFP) positive marrow cells to skeletal muscle cells has been demonstrated and is the focus of this project. We have determined that donor GFP+ marrow cells have converted to muscle cells by colocalizing GFP and desmin in morphologically characteristic muscle fibers. We have found increasing levels of marrow conversion or transdifferentiation to skeletal muscle cells by altering the specifics of the transplant regimen including cell number, timing of transplant and mode of cell delivery (i.e. local injection vs systemic infusion or mobilization of transplanted cells). We have also found that the number of conversion events changes with different mobilization regimens and that subsets of marrow cells, give higher rates of conversion than unseparated marrow cells. The nature of the skeletal muscle injury, radiation or direct cardiotoxin injection, is also critical in determining the level of transdifferentiation of marrow to muscle cells seen in vivo. In preliminary studies using a cardiotoxin muscle injury in previously transplanted mice, combined with radiation and direct injection of different populations of marrow cells we have obtained conversion rates up to12%, i.e. 12% of the muscle fibers were GFP+ skeletal muscle cells. This project evaluates the specifics of muscle injury which will lead to high-level conversion of marrow to muscle and to explore which particular cell type can give rise to muscle at the highest frequency, the timing of transplant suitable for such conversions and the number of cells necessary to obtain significant muscle conversion.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018757-05
Application #
7610567
Study Section
Special Emphasis Panel (ZRR1-RI-3 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
5
Fiscal Year
2007
Total Cost
$374,451
Indirect Cost
Name
Roger Williams Hospital
Department
Type
DUNS #
625899281
City
Providence
State
RI
Country
United States
Zip Code
02908
Kim, Joseph W; Vang, Souriya; Luo, John Zq et al. (2017) Effects of bone marrow on the microenvironment of the human pancreatic islet: A Protein Profile Approach. Mol Cell Endocrinol 450:32-42
Luo, John Z Q; Kim, Joseph W; Luo, LuGuang (2016) EFFECTS OF GINSENG AND ITS FOUR PURIFED GINSENOSIDES (Rb2, Re, Rg1, Rd) ON HUMAN PANCREATIC ISLET ? CELL IN VITRO. Eur J Pharm Med Res 3:110-119
Tang, Jin Bo; Wu, Ya Fang; Cao, Yi et al. (2016) Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons. Sci Rep 6:20643
Kim, Joseph W; Luo, John Z; Luo, Luguang (2015) The Biochemical Cascades of the Human Pancreatic ?-Cells: The Role of MicroRNAs. J Bioanal Biomed 7:
Luo, Lu Guang; Xiong, Fang; Ravassard, Philippe et al. (2015) Human Bone Marrow Subpopulations Sustain Human Islet Function and Viability In vitro. Br J Med Med Res 8:576-587
Ilgun, Handenur; Kim, Joseph William; Luo, LuGuang (2015) Adult Stem Cells and Diabetes Therapy. J Stem Cell Res Transplant 2:
Chorzalska, A; Salloum, I; Shafqat, H et al. (2014) Low expression of Abelson interactor-1 is linked to acquired drug resistance in Bcr-Abl-induced leukemia. Leukemia 28:2165-77
Bartos, Adrian; Dubielecka, Patrycja M (2014) The emerging role of Bcr-Abl-induced cystoskeletal remodeling in systemic persistence of leukemic stem cells. Curr Drug Deliv 11:582-91
Chorzalska, A; Dubielecka, P M (2014) New Abelson interactor-1 (Abi-1)-driven mechanism of acquired drug resistance. Leuk Suppl 3:S7-8
Dabiri, Ganary; Falanga, Vincent (2013) Connective tissue ulcers. J Tissue Viability 22:92-102

Showing the most recent 10 out of 90 publications