Controlling gene expression in primary cultured cells, such as human keratinocytes is difficult due to the stratum corneum, which ranges from 10-50 urn in thickness and serves as a barrier to the intracellular environment. Methods to introduce gene regulation agents such as oligonucleotides have met with limited success, as both the penetration depth and effectiveness of the regulation strategies vary. The proposed work will develop oligonucleotide-nanoparticle antisense agents as methods for controlling gene expression in keratinocytes. This work will take advantage of newly discovered conjugate properties of the nano-materials including enhanced stability, high penetration ability, and non-toxicity. The ability of these agent to work on genes of relevence in skin biology models will be tested.

Public Health Relevance

The creation of stable methods for the introduction and use of oligonucletdies as gene regulation agents is highly significant, as creating much more effective gene regulation agents often require modifications which are at the cost of a loss of activity or through cellular toxicity. Using nanoparticle agents to deliver and protect nucleic acids is a development that is of great interest for future clinical applicaiton.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
5P30AR057216-02
Application #
8103045
Study Section
Special Emphasis Panel (ZAR1)
Project Start
Project End
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
2
Fiscal Year
2010
Total Cost
$49,498
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Chu, Lan H; Indramohan, Mohanalaxmi; Ratsimandresy, Rojo A et al. (2018) The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun 9:996
Tsoi, Lam C; Yang, Jingjing; Liang, Yun et al. (2018) Transcriptional determinants of individualized inflammatory responses at anatomically separate sites. J Allergy Clin Immunol 141:805-808
Kaplan, Nihal; Ventrella, Rosa; Peng, Han et al. (2018) EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling. Invest Ophthalmol Vis Sci 59:393-406
Nekrasova, Oxana; Harmon, Robert M; Broussard, Joshua A et al. (2018) Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat Commun 9:1053
Kishibe, Mari; Griffin, Tina M; Goslawski, Melissa et al. (2018) Topical nicotinic receptor activation improves wound bacterial infection outcomes and TLR2-mediated inflammation in diabetic mouse wounds. Wound Repair Regen 26:403-412
Kam, Chen Yuan; Dubash, Adi D; Magistrati, Elisa et al. (2018) Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J Cell Biol 217:3219-3235
North, Jeffrey P; Golovato, Justin; Vaske, Charles J et al. (2018) Cell of origin and mutation pattern define three clinically distinct classes of sebaceous carcinoma. Nat Commun 9:1894
Rübsam, Matthias; Broussard, Joshua A; Wickström, Sara A et al. (2018) Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harb Perspect Biol 10:
Ratsimandresy, Rojo A; Chu, Lan H; Khare, Sonal et al. (2017) The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 8:15556
Bagchi, Sreya; He, Ying; Zhang, Hong et al. (2017) CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest 127:2339-2352

Showing the most recent 10 out of 102 publications