Washington University has a long record of excellence in musculoskeletal research and clinical care. Historically the base for the research efforts have been individual laboratories in the Departments of Medicine, Orthopaedic Surgery and Pathology. In recent years, ad hoc collaborations have developed between these groups and non-musculoskeletal investigators in Departments of Anatomy &Neurobiology, Biomedical Engineering, Cell Biology, Developmental Biology, Genetics and Pediatrics, thereby significantly expanding our biological skill set and vision. However, we have lacked a central mechanism to leverage these new collaborations efficiently into new research discoveries. With this broad, diverse research base, we propose to create the Washington University Core Center for Musculoskeletal Biology and Medicine (CCMBM). The CCMBM Research Base has 48 members who have over 21 million dollars of annual research support (direct costs). Seventeen of the members have NIAMS funding (21 research grants). The primary goals of the Center are to enhance the productivity of established musculoskeletal scientists, to support young investigators in our field and to facilitate collaboration between established skeletal scientists and those bringing non-traditional questions and strategies to our discipline. The major programmatic focus of the CCMBM will be to support and expedite the creation and analysis of animal models of relevance to musculoskeletal biology and disease. Three Research Cores are proposed: Musculoskeletal Structure and Strength (Core B), In Situ Molecular Analysis (Core C), and Mouse Genetic Models (Core D). Our basic and translational research efforts will be directed toward an understanding of musculoskeletal biology at the molecular, cellular and tissue levels with the goal that such studies will directly impact our understanding of the pathophysiology of osteoporosis, osteoarthritis, muscular dystrophy, osteochondrodysplasias as well as regeneration of bone, cartilage, tendon and muscle. Through the Administrative Core (Core A), the CCMBM will sponsor enrichment activities to promote the exchange of information, ideas and reagents between CCMBM members, and to engage non-members who are doing meritorious research of interest to the CCMBM membership. We will also implement a Pilot &Feasibility Grant Program to provide funding support to young investigators in our field as well as to established, non-musculoskeletal investigators who propose to apply their outside expertise to a problem in musculoskeletal biology or medicine.

Public Health Relevance

Musculoskeletal disorders such as osteoarthritis, osteoporosis and muscular dystropy are a main cause of pain and suffering leading to diminished quality and lost time from work. Our research uses animal models to understand the biological factors underlying musculoskeletal disorders. We use histology, imaging and mechanical testing techniques to assess the structure and strength of bone, tendon and muscle.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-CHW-G (M1))
Program Officer
Tyree, Bernadette
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Sun, David; Brodt, Michael D; Zannit, Heather M et al. (2018) Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration. J Orthop Res 36:682-691
Turecamo, S E; Walji, T A; Broekelmann, T J et al. (2018) Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol 67:1-14
Meyer, Gretchen A (2018) Evidence of induced muscle regeneration persists for years in the mouse. Muscle Nerve 58:858-862
Wang, Chun; Hockerman, Susan; Jacobsen, E Jon et al. (2018) Selective inhibition of the p38? MAPK-MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 215:1315-1325
Chinzei, N; Brophy, R H; Duan, X et al. (2018) Molecular influence of anterior cruciate ligament tear remnants on chondrocytes: a biologic connection between injury and osteoarthritis. Osteoarthritis Cartilage 26:588-599
Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J et al. (2018) Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. J Orthop Res 36:484-497
Chinzei, Nobuaki; Rai, Muhammad Farooq; Hashimoto, Shingo et al. (2018) Evidence for Genetic Contribution to Variation in Post-Traumatic Osteoarthritis in Mice. Arthritis Rheumatol :
Rai, Muhammad Farooq; Pham, Christine Tn (2018) Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 40:67-73
Gaio, Natalie; Martino, Alice; Toth, Zacharie et al. (2018) Masquelet technique: The effect of altering implant material and topography on membrane matrix composition, mechanical and barrier properties in a rat defect model. J Biomech 72:53-62
McBride-Gagyi, Sarah; Toth, Zacharie; Kim, Daniel et al. (2018) Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J Orthop Res :

Showing the most recent 10 out of 335 publications