The Imaging Shared Resource provides Wistar Institute Cancer Center members access to high end microscopy and small animal imaging services. In recent years, technological advances have made it possible to utilize quantitative, high resolution imaging approaches to dissect spatio-temporal requirements of cellular behavior related to malignant transformation, metastatic dissemination and resistance to therapy. During the last project period of this application, this Resource has undergone a major transformation with new scientific leadership and a significant expansion of the technologic capabilities needed to support a broad array of experimental imaging. The Imaging Resource now offers widefield, upright and inverted microscopy, low magnification imaging, close-up and macro photography, live-cell time lapse imaging, laser scanning confocal imaging, 2-photon microscopy, and small animal whole body imaging. During the last funding period the Cancer Center has made a significant effort to upgrade the Resource, investing over $0.6 million to create a new confocal suite equipped with a Leica TCS SP5 II scanning laser confocal microscope. Highly experienced staff are available to consult with investigators on experimental design, imaging techniques, and post-acquisition analysis to provide optimal results from equipment and techniques. Staff members work directly with users to acquire their images, or train users to operate the equipment independently. Other services include developing custom image analysis macros, assistance with maintaining imaging equipment and assistance and training with image editing software for publication. The Resource also carries out technically complex photobleaching assay experiments, and 3D and 4D tracking. The Resource stresses ethical practices in image manipulation, as well as in all aspects of image acquisition, adjustment and analysis. The Resource actively collaborates with other Cancer Center Shared Resources to assist users with high-throughput imaging modalities available in those Resources, including, for example, the Amnis ImageStream in collaboration with the Flow Cytometry Resource, and the IVIS 2001 small animal imager in collaboration with the Animal Resource. Imaging was classified as a Type I Shared Resource to reflect the well-defined, essential nature of its services. This classification is described in the Cancer Center Administration section of this application. During the past project period. Cancer Center members from all three Programs have leveraged the services of the Resource and generated critical preliminary data that considerably increased the priority of scientific publications and grant submissions.

Public Health Relevance

Disease pathogenesis originates from the propagation of events in single cells. It is therefore essential to evaluate the dynamics and organization of these events in single cells, as well as between cells in both tissues and organism. The mission of the Imaging Shared Resource is to provide Cancer Center researchers with access to technologies needed to define the events that initiate malignant transformation with the goal of improving diagnosis, and the development of new, better therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-49
Application #
9438867
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
49
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Schug, Zachary T (2018) Formaldehyde Detoxification Creates a New Wheel for the Folate-Driven One-Carbon ""Bi""-cycle. Biochemistry 57:889-890
Karakashev, Sergey; Zhu, Hengrui; Wu, Shuai et al. (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9:631
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705
Barbieri, Elisa; Trizzino, Marco; Welsh, Sarah Ann et al. (2018) Targeted Enhancer Activation by a Subunit of the Integrator Complex. Mol Cell 71:103-116.e7
Seo, Jae Ho; Agarwal, Ekta; Bryant, Kelly G et al. (2018) Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Res 78:4215-4228
Lu, Huimin; Bowler, Nicholas; Harshyne, Larry A et al. (2018) Exosomal ?v?6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20-35
Stout, Matthew C; Narayan, Shilpa; Pillet, Emily S et al. (2018) Inhibition of CX3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem Biophys Res Commun 495:2264-2269
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Saglam, Ozlen; Conejo-Garcia, Jose (2018) PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr Cancer Sci Ther 5:

Showing the most recent 10 out of 741 publications