The scientific goals and central themes of the Mouse Models and Cancer Stem Cells Program are to investigate stem cell function, including self renewal and differentiation, growth factor requirements and microRNAs, using mouse, Drosophila, Xenopus, and zebrafish as models, with the goal of learning more about tissue and cancer stem cells. In addition, developmental signaling pathways that are known to be reactivated and drive the cancer cell phenotype, including the Wnt/p-catenin, ErbB2 and TAM receptor tyrosine kinases, and TGF-P pathways, are being studied. Genetic models are being developed and used to study cancer and inflammation. The program includes eleven members from six different laboratories: Senyon Choe (TGF-J3 receptor structure and signaling), Fred Gage (stem cell self renewal in the nervous system and cancer), Juan Carlos Izpisua Belmonte (tissue stem cell function in development and cancer), Leanne Jones (stem cell self renewal mechanisms), Chris Kintner (Notch pathway signaling in development), Kuo-Fen Lee (ErbB2 receptor tyrosine kinase signaling), Greg Lemke (TAM receptor tyrosine kinase signaling in the immune system), Samuel Pfaff (EphA receptor tyrosine kinase signaling in development), John Thomas (Drosophila glioblastoma model), InderVerma (mouse models of cancer and lentivirus vector development), and John Young (host cell factors in HTLV infection). The total amount of peer-reviewed support (direct costs) for the last budget year was $7,449,255. None of this was from direct NCI support. Substantial NIH and other federal support for this program is outlined in the table of externally funded research projects. The total number of publications by members of this program in the last grant period (2004-2008) was 299. Of the total publications, 10% were intraprogrammatic and 11 % were interprogrammatic (see Section 8 for explanation of how the program reorganization affects these numbers).

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Fan, Weiwei; He, Nanhai; Lin, Chun Shi et al. (2018) ERR? Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1?/?-Deficient Muscle. Cell Rep 22:2521-2529
Lewis Jr, Tommy L; Kwon, Seok-Kyu; Lee, Annie et al. (2018) MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun 9:5008
Eichner, Lillian J; Brun, Sonja N; Herzig, S├ębastien et al. (2018) Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models. Cell Metab :
Dravis, Christopher; Chung, Chi-Yeh; Lytle, Nikki K et al. (2018) Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell 34:466-482.e6
Zarrinpar, Amir; Chaix, Amandine; Xu, Zhenjiang Z et al. (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9:2872
Ramaswamy, Suvasini; Tonnu, Nina; Menon, Tushar et al. (2018) Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX. Cell Rep 23:1565-1580
Hsu, Cynthia L; Lee, Elian X; Gordon, Kara L et al. (2018) MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun 9:942
Sonntag, Tim; Vaughan, Joan M; Montminy, Marc (2018) 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 285:467-480
Herzig, S├ębastien; Shaw, Reuben J (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121-135

Showing the most recent 10 out of 457 publications