The Radiochemistry Facility is a shared resource that provides Cancer Center investigators with expertise and facilities for the radiolabeling and quality control of molecules of potential interest for molecular imaging in animal models of human cancer as well as cancer radio-diagnosis and targeted radiotherapy. This is a new facility that has evolved from the Radiolabeling Facility to meet the emerging needs within the Cancer Center for PET radiochemistry to provide probes for evaluating tumor biochemistry and receptor biology, monitoring treatment response, expediting the development of novel therapies and personalizing patient treatment protocols. Although the primary function of the past facility - labeling antibodies for research purposes and clinical trials - will sfill be performed, the major funcfion of the Radiochemistry Facility will be to provide Duke Comprehensive Cancer Center investigators with the most essential positron emitting radiotracers needed for basic and clinical research. Functions of the facility include consultafion with investigators to determine optimum radionuclide, targefing vector and radioligand, radiosynthesis, scale up, and quality control of the labeled product. Finally, the Director is available to work with invesfigators in the preparafion of an Investigafional New Drug or Radioactive Drug Research Committee Application to permit patient studies with radiolabeled molecules.

Public Health Relevance

Radiolabeled molecules are essential components of molecular imaging and the targeted radiotherapy of cancer;however, highly specialized radiochemistry equipment and expertise are required for their radiosynthesis, particulariy at the levels needed for clinical studies and many research applicafions. The radiochemistry facility will perform an important core funcfion by providing radiolabeled molecules to cancer center investigators in a cost effective manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA014236-38S1
Application #
8532222
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
38
Fiscal Year
2012
Total Cost
$2,499
Indirect Cost
$907
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Abdi, Khadar; Lai, Chun-Hsiang; Paez-Gonzalez, Patricia et al. (2018) Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun 9:1655
Hudson, Kathryn E; Rizzieri, David; Thomas, Samantha M et al. (2018) Dose-intense chemoimmunotherapy plus radioimmunotherapy in high-risk diffuse large B-cell lymphoma and mantle cell lymphoma: a phase II study. Br J Haematol :
Fayanju, Oluwadamilola M; Park, Ko Un; Lucci, Anthony (2018) Molecular Genomic Testing for Breast Cancer: Utility for Surgeons. Ann Surg Oncol 25:512-519
Porter, Laura S; Fish, Laura; Steinhauser, Karen (2018) Themes Addressed by Couples With Advanced Cancer During a Communication Skills Training Intervention. J Pain Symptom Manage 56:252-258
Káradóttir, Ragnhildur T; Kuo, Chay T (2018) Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 41:139-161
Han, Peng; Liu, Hongliang; Shi, Qiong et al. (2018) Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck. Mol Carcinog 57:784-793
Xu, Yinghui; Wang, Yanru; Liu, Hongliang et al. (2018) Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 57:22-31
Abdi, Khadar; Kuo, Chay T (2018) Laminating the mammalian cortex during development: cell polarity protein function and Hippo signaling. Genes Dev 32:740-741
Lu, Min; Sanderson, Sydney M; Zessin, Amelia et al. (2018) Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab 6:14
Qian, Danwen; Liu, Hongliang; Wang, Xiaomeng et al. (2018) Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival. Int J Cancer :

Showing the most recent 10 out of 513 publications