This is a multifaceted program aimed at (1) elucidating the molecular mechanisms underlying the balance of growth and differentiation in eukaryotic cells and (2) determining how this process goes awry in hyperproliferative diseases such as cancer. The program in molecular biology brings together faculty in four different departments and serves as a base for many research collaborations and interactions focused on understanding the biochemical basis of cancer with the ultimate goal of developing new and improved diagnostic and therapeutic agents for cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-27
Application #
6397821
Study Section
Project Start
2000-08-01
Project End
2002-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
27
Fiscal Year
2000
Total Cost
$289,716
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Hope, C Matthew; Webber, Jemma L; Tokamov, Sherzod A et al. (2018) Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression. Elife 7:
Wu, Chengyue; Pineda, Federico; Hormuth 2nd, David A et al. (2018) Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med :
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Ni, Kaiyuan; Lan, Guangxu; Chan, Christina et al. (2018) Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 9:2351
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Webber, Jemma L; Zhang, Jie; Massey, Alex et al. (2018) Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 145:
Wei, Jiangbo; Liu, Fange; Lu, Zhike et al. (2018) Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 71:973-985.e5
Boisclair Lachance, Jean-François; Webber, Jemma L; Hong, Lu et al. (2018) Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification. Genes Dev 32:389-401
Szmulewitz, Russell Z; Peer, Cody J; Ibraheem, Abiola et al. (2018) Prospective International Randomized Phase II Study of Low-Dose Abiraterone With Food Versus Standard Dose Abiraterone In Castration-Resistant Prostate Cancer. J Clin Oncol 36:1389-1395
Kudron, Michelle M; Victorsen, Alec; Gevirtzman, Louis et al. (2018) The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 208:937-949

Showing the most recent 10 out of 668 publications