The University of Chicago Comprehensive Cancer Center (UCCCC) Transgenic Mouse/Embryonic Stem Cell Facility provides comprehensive genetic engineering services to alter the genome of the laboratory mouse. The UCCCC has many invesfigators who use mouse models as their primary tool of analysis, as well as a multitude of addifional investigators who require the occasional mouse model in their studies of the causes and treatment of cancer. The generation and maintenance of transgenic animals through the microinjection of single-celled mouse embryos, and the generation of genetically modified mice through the use of ES cells require specialized technical personnel. Furthermore, such efforts necessitate the acquisition of an array of devoted equipment. Thus, the availability of a shared resource greatly reduces research costs for the individual investigators of the UCCCC. The existence of this Facility also greatly increases the accessibility of genetic engineering technology to investigators with limited related experience. The UCCCC Transgenic Mouse/Embryonic Stem Cell Facility was established in 1991, and has been tremendously productive and successful;the range of services provided has expanded considerably since it's founding. Services provided by the Transgenic Mouse/Embryonic Stem Cell Facility include: 1) transgenic mouse production from founder through F1 Stage;2) ES cell technology mouse production;3) ES cell gene targeting and culturing;4) embryo rederivation;5) mouse embryonic feeder (MEF) cell production;6) Timed pregnancies of various strains and lines of mice;7);various breeding services and GEM model line maintenance;8) DNA preparation from ES cell lines;and 9) design and construction of transgenic or ES cell targeting vectors. In addition to the technical services, the Facility also offers assistance with the design of studies that require mouse molecular genetics, as well as advice and instruction on mouse handling and breeding. In providing these comprehensive services, the UCCCC Transgenic Mouse/Embryonic Stem Cell Facility has generated mouse models that have led to advances in our understanding of cancer, including cancers of the breast, skin, colon, brain and prostate.

Public Health Relevance

This Facility generates mouse models of human disease to facilitate UCCCC member's research into the molecular mechanisms of cancer biology. As such, it is an integral part of the scienfific success of UCCCC members.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744838
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$116,561
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Wood, Kevin; Byron, Elizabeth; Janisch, Linda et al. (2018) Capecitabine and Celecoxib as a Promising Therapy for Thymic Neoplasms. Am J Clin Oncol 41:963-966
Sample, Ashley; Zhao, Baozhong; Wu, Chunli et al. (2018) The Autophagy Receptor Adaptor p62 is Up-regulated by UVA Radiation in Melanocytes and in Melanoma Cells. Photochem Photobiol 94:432-437
Hrusch, C L; Manns, S T; Bryazka, D et al. (2018) ICOS protects against mortality from acute lung injury through activation of IL-5+ ILC2s. Mucosal Immunol 11:61-70
Hope, C Matthew; Webber, Jemma L; Tokamov, Sherzod A et al. (2018) Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression. Elife 7:
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Wu, Chengyue; Pineda, Federico; Hormuth 2nd, David A et al. (2018) Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med :
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Ni, Kaiyuan; Lan, Guangxu; Chan, Christina et al. (2018) Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 9:2351
Wei, Jiangbo; Liu, Fange; Lu, Zhike et al. (2018) Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 71:973-985.e5

Showing the most recent 10 out of 668 publications