The overarching goal of the University of Chicago Medicine Comprehensive Cancer Center (UCCCC) Molecular Mechanisms of Cancer (MMC) Program is to identify and characterize molecular mechanisms underlying cancer cell growth and metastasis leading to development of improved treatment options through discovery-based science. To meet these overall objectives, the MMC Program has been organized by its leadership around three key scientific themes: 1) mechanisms of altered gene expression in cancer that encompasses understanding the significance for cancer etiology of genomic rearrangements, context-specific gene expression patterns and altered gene signatures, chromatin modifications and epigenetic marks and RNA biology; 2) mechanisms of transformation and altered cell growth in cancer, that includes analysis of how proliferation, differentiation, metabolism, cell death and autophagy are deregulated in cancers, and the role these processes play in cancer stem cells and therapy responses; and 3) mechanistic analysis of the tumor microenvironment and cancer metastasis, with an emphasis on defining novel mechanisms of altered cell motility, loss of adhesion, extra-cellular matrix control, acquisition of invasiveness, cell-cell signaling in the tumor microenvironment, tumor hypoxia, cancer-associated fibroblasts, and tumor-associated macrophages. The MMC Program consists of 37 faculty members from 14 Departments, including key faculty from the Department of Chemistry. In the current funding period (2013-2016), Program members published 564 cancer-related articles (18% intraprogrammatic, 34% interprogrammatic, and 60% interinstitutional). W2Program members are supported by $8.52 M (direct costs) in peer-reviewed funding, and $2.80 M (direct costs) from the National Cancer Institute (NCI), as well as $4.2 M (direct costs) in non-peer-reviewed funding. The focused development of MMC during the past 5 years provides the requisite infrastructure and knowledge base to forge translational research interactions within our own Cancer Center and with other Cancer Centers. A major strength of the Program over the past 5 years has been the expansion of research into mechanisms of metastasis and epigenetic signaling, as well as the new development of chemical approaches in cancer research. In summary, the MMC Program has a major impact on all components of the UCCCC as the primary driver of basic scientific discovery in molecular mechanisms of cancer using systems approaches, model organisms and primary human tumor samples. The interactions of MMC Program members with other UCCCC faculty through intra- and interprogrammatic collaborations further enable the key scientific steps needed for the discovery and development of promising therapies. Moving forward, MMC Program leadership recognizes new opportunities by leveraging our growing strengths especially in chemical biology, tumor metabolism, tumor microenvironment and immunology, and cancer metastasis, with the overarching goal of increasing successful basic science-clinical partnerships in these areas.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA014599-43S2
Application #
9756921
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Shafik, Hasnaa
Project Start
Project End
Budget Start
2018-05-22
Budget End
2019-03-31
Support Year
43
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Hope, C Matthew; Webber, Jemma L; Tokamov, Sherzod A et al. (2018) Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression. Elife 7:
Wu, Chengyue; Pineda, Federico; Hormuth 2nd, David A et al. (2018) Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med :
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Ni, Kaiyuan; Lan, Guangxu; Chan, Christina et al. (2018) Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 9:2351
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Webber, Jemma L; Zhang, Jie; Massey, Alex et al. (2018) Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 145:
Wei, Jiangbo; Liu, Fange; Lu, Zhike et al. (2018) Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 71:973-985.e5
Boisclair Lachance, Jean-François; Webber, Jemma L; Hong, Lu et al. (2018) Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification. Genes Dev 32:389-401
Szmulewitz, Russell Z; Peer, Cody J; Ibraheem, Abiola et al. (2018) Prospective International Randomized Phase II Study of Low-Dose Abiraterone With Food Versus Standard Dose Abiraterone In Castration-Resistant Prostate Cancer. J Clin Oncol 36:1389-1395
Kudron, Michelle M; Victorsen, Alec; Gevirtzman, Louis et al. (2018) The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 208:937-949

Showing the most recent 10 out of 668 publications