Proteomics Core Facility The Proteomics Core strives to provide outstanding mass spectrometry-based service and training to Cancer Center researchers. The core provides state-of-the-art analysis for protein identification from mixtures of proteins;defining post-translational modifications (i.e. phosphorylation, acetylation, ubiquitination);and quantitative analysis of changes in protein expression or modification using methods such as SILAC and ITRAQ, The core works with investigators to ensure use of the best proteomic applications for design of experimental protocols needed to answer important cancer biology-related questions and provides a unique training environment for students and fellows. Highlights of proteomic research supported by the core include papers In Cell (Salmon), Nature (Zhang), PNAS (Whang) and Molecular and Cellular Biology (Burridge, Marzluff, Patterson). The core is led by three Ph.D. scientists with extensive proteomics experience: Drs. Lee Graves (Faculty Director), Maria Hines (Facility Director) and Xian Chen (Technology Development Director). Core usage has steadily increased and reflects the fundamental need to understand proteome dynamics at an ever increasing level of sophistication. The Institution and Cancer Center has provided more than $2.5 million dollars in the past five years for new mass spectrometry and nano-LC instrumentation. The core continues to increase its capacity to perform high-throughput large scale, quantitative proteomics. To accomplish these objectives, CCSG support of $144,563 is proposed, which is approximately 30% of the projected Proteomics Core operating costs for 2010. In 2009, the core was used by 46 cancer center members (100% peer-reviewed), accounting for 86% of total core usage. The proposed budget will partially support salaries of six core personnel and sen/ice contracts for mass spectrometers. This is an approximate 19% increase in CCSG support that is needed for the expansion of large scale high-throughput, quantitative proteomics. Future plans involve expanding the mass spectrometry-based infrastructure with an additional LTQ Orbitrap for support of state-of-the-art quantitative proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016086-35
Application #
8340309
Study Section
Subcommittee G - Education (NCI)
Project Start
2011-05-23
Project End
2015-11-30
Budget Start
2011-05-23
Budget End
2011-11-30
Support Year
35
Fiscal Year
2011
Total Cost
$235,805
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Huang, Weigang; Wang, Xiaoyang; Endo-Streeter, Stuart et al. (2018) A membrane-associated, fluorogenic reporter for mammalian phospholipase C isozymes. J Biol Chem 293:1728-1735
Smitherman, Andrew B; Anderson, Chelsea; Lund, Jennifer L et al. (2018) Frailty and Comorbidities Among Survivors of Adolescent and Young Adult Cancer: A Cross-Sectional Examination of a Hospital-Based Survivorship Cohort. J Adolesc Young Adult Oncol 7:374-383
Zheng, Xiaojing; O'Connell, Catherine M; Zhong, Wujuan et al. (2018) Discovery of Blood Transcriptional Endotypes in Women with Pelvic Inflammatory Disease. J Immunol 200:2941-2956
Jenkins, Mark A; Win, Aung Ko; Templeton, Allyson S et al. (2018) Cohort Profile: The Colon Cancer Family Registry Cohort (CCFRC). Int J Epidemiol 47:387-388i
Williams, Rebecca S; Derrick, Jason; Liebman, Aliza K et al. (2018) Content analysis of e-cigarette products, promotions, prices and claims on Internet tobacco vendor websites, 2013-2014. Tob Control 27:e34-e40
Hosseinipour, Mina C; Kang, Minhee; Krown, Susan E et al. (2018) As-Needed Vs Immediate Etoposide Chemotherapy in Combination With Antiretroviral Therapy for Mild-to-Moderate AIDS-Associated Kaposi Sarcoma in Resource-Limited Settings: A5264/AMC-067 Randomized Clinical Trial. Clin Infect Dis 67:251-260
Ren, Jianke; Hathaway, Nathaniel A; Crabtree, Gerald R et al. (2018) Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 13:173-181
Patel, Nirali M; Michelini, Vanessa V; Snell, Jeff M et al. (2018) Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing. Oncologist 23:179-185
Hopcraft, Sharon E; Moody, Cary A; Damania, Blossom (2018) Air-Liquid Interface System To Understand Epstein-Barr Virus-Associated Nasopharyngeal Carcinoma. mSphere 3:
Li, Dongling; Hu, Minling; Liu, Ying et al. (2018) CD24-p53 axis suppresses diethylnitrosamine-induced hepatocellular carcinogenesis by sustaining intrahepatic macrophages. Cell Discov 4:6

Showing the most recent 10 out of 1525 publications