The Histopathology & Microscopy Sciences (HPMS) Service offers Cancer Center members access to technologies and expertise in Histology, Necropsy, Electron Microscopy (scanning and electron), Light Microscopy and Cytogenetics. In combination with the Institute for Molecular Biophysics, HPMS delivers Cancer Center faculty unparalleled access to leading edge microscopy systems and the supporting infrastructure needed for the analysis and characterization of normal tissue morphology and mutant disease pathologies. Through HPMS Cancer Center, members access mouse necropsy, tissue collection, routine and specialized tissue processing and histological stains, immunofluorescence labeling, in situ hybridization, confocal microscopy, multiphoton microscopy, live-cell imaging, fluorescence and standard light microscopy, laser capture microdissection (LCM), computerized image analysis, and karyotyping and fluorescent in situ hybridization for chromosome analysis. HPMS (formerly Biological Imaging) has been supported by the CCSG grant for the past five years. The HPMS Project Leader, Research Scientist Dr. Richard Smith, oversees this fee-for-service operation. To further support the pathology analysis needs of the Cancer Center, access to Dr. Bronson, the Center's consulting Pathologist, and to all recommended follow-up procedures, are scheduled through HPMS. Six full-time histologists, two microscopists, three necropsy technicians, a cytogeneticist, consulting pathologist and senior manager staff the facility which occupies 3,772 ft2 of laboratory space in the Functional Genomics Building. Dr. Smith communicates with the Cancer Center users, Service staff and Center Administration to ensure that research needs are met in the most efficient, cost-effective and technically current manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA034196-25
Application #
7663127
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
25
Fiscal Year
2008
Total Cost
$418,636
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Richter, Wolfgang F; Christianson, Gregory J; Frances, Nicolas et al. (2018) Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs 10:803-813
Tamura, Ryo; Yoshihara, Kosuke; Saito, Tetsuya et al. (2018) Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis 7:4
Rutherford, Sarah C; Fachel, Angela A; Li, Sheng et al. (2018) Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood 132:e13-e23
Barthel, Floris P; Wesseling, Pieter; Verhaak, Roel G W (2018) Reconstructing the molecular life history of gliomas. Acta Neuropathol 135:649-670
Kim, Hyunsoo; Kumar, Pooja; Menghi, Francesca et al. (2018) High-resolution deconstruction of evolution induced by chemotherapy treatments in breast cancer xenografts. Sci Rep 8:17937
Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron et al. (2018) Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 10:
Barthel, Floris P; Johnson, Kevin C; Wesseling, Pieter et al. (2018) Evolving Insights into the Molecular Neuropathology of Diffuse Gliomas in Adults. Neurol Clin 36:421-437
Schechter, Lisa M; Creely, David P; Garner, Cherilyn D et al. (2018) Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. MBio 9:
Tarchini, Basile; Longo-Guess, Chantal; Tian, Cong et al. (2018) A spontaneous mouse deletion in Mctp1 uncovers a long-range cis-regulatory region crucial for NR2F1 function during inner ear development. Dev Biol 443:153-164
Vian, Laura; P?kowska, Aleksandra; Rao, Suhas S P et al. (2018) The Energetics and Physiological Impact of Cohesin Extrusion. Cell 173:1165-1178.e20

Showing the most recent 10 out of 1156 publications