The Bioinformatics Core (BIC) will provide the hardware, software, and critical human expertise infrastructure necessary to manage, integrate, analyze, interpret, and disseminate data produced by Cancer Center investigators, and will provide much-needed bioinformatics and quantitative training in critically high demand among Cancer Center members. The BIC is staffed by experts who have years of collective experience in managing and analyzing large-scale, high-throughput biological data. The very nature of cancer research is evolving, driven by the ease and plummeting costs of generating vast amounts of sequence, expression, structure, and biochemical data. Extracting the most biological meaning from these data will require sophisticated bioinformatics expertise that most individual labs do not possess. Further, the size and complexity of these data requires robust data management planning, and funding agencies often require permanent archival and rapid public dissemination of high-throughput data to the broader cancer research community. Additionally, as cancer research continues to become more data-intensive, researchers often lack the bioinformatics and quantitative training that is increasingly essential. The BIC fills all of these gaps and will serve an absolutely essential role in the immediate and long-term realization of the Cancer Center's research mission.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-29
Application #
9854912
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
Project End
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
29
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Olmez, Inan; Zhang, Ying; Manigat, Laryssa et al. (2018) Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Res 78:4360-4369
Parini, Paolo; Melhuish, Tiffany A; Wotton, David et al. (2018) Overexpression of transforming growth factor ? induced factor homeobox 1 represses NPC1L1 and lowers markers of intestinal cholesterol absorption. Atherosclerosis 275:246-255
Banizs, Anna B; Huang, Tao; Nakamoto, Robert K et al. (2018) Endocytosis Pathways of Endothelial Cell Derived Exosomes. Mol Pharm :
Jia, Deshui; Augert, Arnaud; Kim, Dong-Wook et al. (2018) Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition. Cancer Discov 8:1422-1437
Manukyan, Arkadi; Kowalczyk, Izabela; Melhuish, Tiffany A et al. (2018) Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 119:4644-4655
Engelhard, Victor H; Rodriguez, Anthony B; Mauldin, Ileana S et al. (2018) Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J Immunol 200:432-442
Martins, André L; Walavalkar, Ninad M; Anderson, Warren D et al. (2018) Universal correction of enzymatic sequence bias reveals molecular signatures of protein/DNA interactions. Nucleic Acids Res 46:e9
Michaels, Alex D; Newhook, Timothy E; Adair, Sara J et al. (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24:1415-1425
Shi, Lei; Li, Kang; Guo, Yizhan et al. (2018) Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc Natl Acad Sci U S A 115:11808-11813
Yang, Jun; LeBlanc, Francis R; Dighe, Shubha A et al. (2018) TRAIL mediates and sustains constitutive NF-?B activation in LGL leukemia. Blood 131:2803-2815

Showing the most recent 10 out of 539 publications