? MEMBRANES, ORGANELLES, AND METABOLISM Membranes, Organelles, and Metabolism (MOM) is a new program that was created during the reorganization of the Basic Science Division in the Lurie Cancer Center (LCC). The program is founded on the emerging concept that signaling and metabolic pathways rely on association with a physically interconnected network of cell membranes and membrane-bound organelles, which are exploited by developing tumors to promote malignant transformation and progression. Integration of the classic view of cellular signaling as a series of biochemical reactions with this current perspective provides a clearly articulated focus for an outstanding group of basic science investigators studying mitochondrial biogenesis and function, metabolism, signal transduction and host- pathogen interactions. The broad objectives of MOM are to elucidate how cellular membranes and organelles drive cell response and effector cascades, to determine how tumors and tumor-causing pathogens exploit these pathways, and to identify pathway components as therapeutics targets. These objectives are pursued in three specific aims: (1) Understand how cells utilize metabolic pathways to dictate cell proliferation, metabolic adaptation, and gene expression thereby modulating tumor growth; (2) Define the molecular mechanisms by which pathogens disrupt and/or utilize host pathways to stimulate tumorigenesis; (3) Determine how signal transduction pathways initiated from plasma membrane and/or organelles are integrated in cancer cells to promote tumorigenesis. The MOM program leader is Navdeep S. Chandel Ph.D., Professor in the Department of Medicine and the Department Cell and Molecular Biology. He is an expert in cancer metabolism, mitochondrial biology, and oxidative stress. The co-leader is Curt Horvath, Ph.D., a Professor in the Department of Molecular Biosciences, whose expertise is in mechanisms of cytokine signal transduction and gene regulation in normal and malignant cells. Drs. Chandel and Horvath lead an interdepartmental cohort of investigators comprising 36 faculty from 10 departments and 3 schools. Between 2013 and 2017 there were 405 cancer-relevant publications from the program, 71 (18%) of which represent intra-programmatic collaborations and 157 (39%) represent inter- programmatic collaborations. Work in the MOM program is supported by cancer-relevant peer-reviewed funding of $12,161,291 (direct) with $2,187,789 (direct) from NCI and $9,973,502 (direct) from other peer-reviewed sources. The MOM program provides its members with the research support, tools, and scientific networking opportunities to achieve an understanding of how interference with membrane networks and metabolism contributes to cell transformation and tumor progression. Through MOM-sponsored monthly membership meetings, workshops, symposia, and seminar series, the program fosters collaboration between program members and their clinical/translational partners, and links investigators with new opportunities to advance their research within the LCC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA060553-24
Application #
9571313
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-08-10
Budget End
2019-07-31
Support Year
24
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Bui, Triet M; Mascarenhas, Lorraine A; Sumagin, Ronen (2018) Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 6:e1431038
Ritzert, Jeremy T; Lathem, Wyndham W (2018) Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague. J Bacteriol 200:
Forte, Eleonora; Swaminathan, Suchitra; Schroeder, Mark W et al. (2018) Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. MBio 9:
Park, Yun Ji; Kenney, Grace E; Schachner, Luis F et al. (2018) Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins. Biochemistry 57:3515-3523
Fong, Lam-Kiu; Wang, Ziwei; Schatz, George C et al. (2018) The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. J Am Chem Soc 140:6226-6230
Mandelin 2nd, Arthur M; Homan, Philip J; Shaffer, Alexander M et al. (2018) Transcriptional Profiling of Synovial Macrophages Using Minimally Invasive Ultrasound-Guided Synovial Biopsies in Rheumatoid Arthritis. Arthritis Rheumatol 70:841-854
Suraneni, Praveen K; Corey, Seth J; Hession, Michael J et al. (2018) Dynamins 2 and 3 control the migration of human megakaryocytes by regulating CXCR4 surface expression and ITGB1 activity. Blood Adv 2:3540-3552
Yan, M; Lewis, P L; Shah, R N (2018) Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation. Biofabrication 10:035010
Edelbrock, Alexandra N; Àlvarez, Zaida; Simkin, Dina et al. (2018) Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor. Nano Lett 18:6237-6247
Fisher, Daniel W; Han, Ye; Lyman, Kyle A et al. (2018) HCN channels in the hippocampus regulate active coping behavior. J Neurochem 146:753-766

Showing the most recent 10 out of 1972 publications