The Proteomics Core was established in 2003 to address the needs of Center members to examine protein expression, interaction, and post-translational modifications as part of the molecular basis of cancer. The characterization of proteins and analysis of patterns of protein expression and modification will play a critical role in diagnosis and treatment of disease. Gene expression profiling can only provide a partial answer to the molecular aspects of cancer, because proteins are the ultimate mediators of gene function. The Proteomics Core provides investigators with expertise, protocols, and instrumentation to support protein and peptide separations, robotic sampling and digestion, as well as protein and peptide mass analysis. Furthermore, via collaboration with Cancer Informatics, we support data systems, software, and bioinformatics tools for data analysis and archiving. The individual services are grouped into modules for the ease of the collaborator; platforms are provided for protein identification, post-translational modification analysis, and quantification. Since the last submission, the Proteomics Core has added several new personnel, including two staff scientists. Several instruments have been added to the Core, including a second LTQ linear ion trap mass spectrometer (Thermo), an LTQ-Orbitrap upgrade (Thermo), a Symphony peptide synthesizer (Protein Technologies), and a ProPrep 11 (Digilatj) robot for automated sample handling, including protein.digestion, clean up, and MALDI spotting. A variety of new services have also been introduced including standard procedures and charges for separations and the implementation of quantitative mass spectrometry methods. Most significantly, the Core has fully implemented the reaction monitoring techniques on the triple quadrupole mass spectrometer. The Core's educational focus has expanded with the creation of a Clinical Proteomics Training Program, which enables the Core to train underrepresented undergraduate students. The Core requests CCSG Support of $191,446, which is 30% of its operational budget. Over 93% of usage is by Moffitt members and peer-reviewed.

Public Health Relevance

Proteomics is a new and rapidly evolving field that combines aspects of protein chemistry, separation science, mass spectrometry (MS), and bioinformatics. A central resource for Moffitt Cancer Center investigators, it provides expertise in proteomic applications, access to a variety of separations and mass spectrometry instruments, a highly trained collaborative staff, and educational materials and programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA076292-16
Application #
8613457
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
16
Fiscal Year
2014
Total Cost
$91,273
Indirect Cost
$37,105
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Barata, Anna; Gonzalez, Brian D; Sutton, Steven K et al. (2018) Coping strategies modify risk of depression associated with hematopoietic cell transplant symptomatology. J Health Psychol 23:1028-1037
Karolak, Aleksandra; Rejniak, Katarzyna A (2018) Micropharmacology: An In Silico Approach for Assessing Drug Efficacy Within a Tumor Tissue. Bull Math Biol :
Karolak, Aleksandra; Estrella, Veronica C; Huynh, Amanda S et al. (2018) Targeting Ligand Specificity Linked to Tumor Tissue Topological Heterogeneity via Single-Cell Micro-Pharmacological Modeling. Sci Rep 8:3638
Li, Qian; Balagurunathan, Yoganand; Liu, Ying et al. (2018) Comparison Between Radiological Semantic Features and Lung-RADS in Predicting Malignancy of Screen-Detected Lung Nodules in the National Lung Screening Trial. Clin Lung Cancer 19:148-156.e3
Kazi, Aslamuzzaman; Xiang, Shengyan; Yang, Hua et al. (2018) GSK3 suppression upregulates ?-catenin and c-Myc to abrogate KRas-dependent tumors. Nat Commun 9:5154
McWilliams, Robert R; Wieben, Eric D; Chaffee, Kari G et al. (2018) CDKN2A Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiol Biomarkers Prev 27:1364-1370
Ctortecka, Claudia; Palve, Vinayak; Kuenzi, Brent M et al. (2018) Functional Proteomics and Deep Network Interrogation Reveal a Complex Mechanism of Action of Midostaurin in Lung Cancer Cells. Mol Cell Proteomics 17:2434-2447
Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James et al. (2018) Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 9:3927
Schmit, Stephanie L; Edlund, Christopher K; Schumacher, Fredrick R et al. (2018) Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J Natl Cancer Inst :
Kang, Sokbom; Thompson, Zachary; McClung, E Claire et al. (2018) Gene Expression Signature-Based Prediction of Lymph Node Metastasis in Patients With Endometrioid Endometrial Cancer. Int J Gynecol Cancer 28:260-266

Showing the most recent 10 out of 1254 publications